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Chapter 2 (Lecture 4-6) 

Schrodinger equation for some simple systems 

Table: Various one dimensional potentials 
System Physical 

correspondence 

Potential Total Energies and Probability density 

    

Significant feature 

Zero Potential 
Free particle i.e. 

Proton beam 

 

Wave properties of 

particle 

Infinite square 

well potential 

Molecule 

confined to box 

 

Approximation of 

finite well 

Step Potential 

(E<V) 

Conduction 

electron near 

surface of metal 

 

Penetration of 

excluded region 

Step potential 

(E>V) 

Neutron trying to 

escape nucleus 

 

Partial reflection at 

potential discontinuity 

Barrier potential 

(E<V) 

Α particle trying 

to escape 

Coulomb barrier 

 

Tunneling 

0.0 0.5 1.0 1.5 2.0 2.5

0

2

4

6

8

x

Infinite Potential Well

4 2 0 2 4 6 8

0

1

2

3

4

x

Potential Barrier

4 2 0 2 4 6 8

0

1

2

3

4

5

x

Potential Barrier

4 2 0 2 4 6 8

0

1

2

3

4

x

Potential Barrier

     

      



2 
 

Barrier potential 

(E>V) 

Electron 

scattering from 

negatively 

ionized atom 

 

No reflection at 

certain energies 

Finite square well 

potential 

Neutron bound in 

the nucleus 

 

Energy quantization 

Particle in a ring 
Aromatic 

compounds 

contains atomic 

rings. 

 

Degenerate quantum 

states 

Particle in a 

spherical well 

Model the 

nucleus with a 

potential which is 

zero inside the 

nuclear radius and 

infinite outside 

that radius. 

 

Quantization of energy 

and degeneracy of 

states 

Simple harmonic 

oscillator potential 

Atom of vibrating 

diatomic 

molecule 

 

Zero point energy 

Uncertainty 

Example: Particle in a box (Infinite well potential) 

As an example consider infinite well potential describes a particle free to move in a small space surrounded by impenetrable 

barriers.  

The model is mainly used as a hypothetical example to illustrate the differences between classical and quantum systems. In 

classical systems, for example a ball trapped inside a heavy box, the particle can move at any speed within the box and it is no 

more likely to be found at one position than another. However, when the well becomes very narrow (on the scale of a few 

nanometers), quantum effects become important. The particle may only occupy certain positive energy levels.  

Likewise, it can never have zero energy, meaning that the particle can never "sit still". Additionally, it is more likely to be found at 

certain positions than at others, depending on its energy level. The particle may never be detected at certain positions, known as 

spatial nodes. 
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The particle in a box model provides one of the very few problems in quantum mechanics which can be solved analytically, 

without approximations. This means that the observable properties of the particle (such as its energy and position) are related to 

the mass of the particle and the width of the well by simple mathematical expressions. Due to its simplicity, the model allows 

insight into quantum effects without the need for complicated mathematics. It is one of the first quantum mechanics problems 

taught in undergraduate physics courses, and it is commonly used as an approximation for more complicated quantum systems.  

Mathematically we can write: 

     {
                  
             
                  

 

 

We have three distinct regions, because the potential energy function (potential for short) changes discontinuously.  So, we have 

to solve the Schrödinger Equation three times. 

Fortunately, for     and    , the solutions are trivial:        , since        . 

Within the well,       , so the particle is “free.” 

 
  

  

   

   
    

The general solution is                .  The parameters A, B, and   
√   

 
 are determined by the boundary conditions 

on the   and by the normalization requirement. 

That is, we expect that            . 

At                        

Then 

At                                     

The choices of A=0 also solution but in that case     is not a valid solution. 

From this we obtain the discrete allowed energy levels for the particle confined in the well. 

  
      

    
 

The n is known as the principle quantum number.  It labels the energy levels, or energy states of the particle.  In other from 

classical physics we have obtained discrete energy values instead of continuous energy. 

Stationary states are evidently 

       √
 

 
   (

  

 
 )  

 
      
     

 

The most general solution is linear combination of stationary states 
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       ∑   √
 

 
   (

  

 
 )  

 
      
     

 

   

 

Then the initial wave function can be written as 

       ∑        

 

   

 

The coefficient    can be calculates using the relation 

   ∫ √
 

 
   (

  

 
 )        

 

 

 

 

 

Discussion 

1. Wave function is even or odd wrt center of the well 

2. The wave functions are orthogonal 

3. Each    has n-1 nodes 

CW(Class work). Particle in the infinite well is in its groud state. Find probability of finding of particle between (0,a/4), (0,a/2), 

(a/4,a/2). 

Example: 

A particle in the infinite square well has the initial wave function 

            
  

 
           

For some constant A. Outside the well wave function is zero. Find         

Solution: 

Normalize the wave function:   √
 

 
. 

Calculate   ; 

   ∫ √
 

 
   (

  

 
 )√

 

 

 

 

    (
  

 
 )    {

             
            

 

Thus the wave function is 

       √
 

 
   (

  

 
 )  

 
      
     

 

CW. Show that sum of the probabilities 

∑|  | 
 

   

    

CW: Show that expectation values of energy must be 

〈 〉  ∑|  | 
 

   

    

CW. Calculate expectation values of 〈 〉 〈  〉 〈 〉 〈  〉 〈 〉 for the nth stationary state of the infinite well. 

CW. Check the uncertainty principle is satisfied. Which state come closest to uncertainty principle. 

 

Example: Particle in a Ring 

Consider a variant of the one-dimensional particle in a box problem in which the x-axis is bent into a ring of 

radius. We can write the same Schrödinger equation 
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There are no boundary conditions in this case since the x-axis closes upon itself. A more appropriate independent variable for this 

problem is the angular position on the ring given by,      . The Schrödinger equation would then read: 

 
  

    

   

   
    

The SE can be written more compactly: 

   

   
       

where           . Then wave function 

             

with boundary condition 

             

CW: we can easily show 

            

then  

  
  

  
    

Normalized wavefunction is given by 

  
 

√  
     

It satisfy both othogonality and orthonormality. 

Uncertainty relation between z-componet of angular momentum       
 

  
 

 and   also satisfied! 

Example: Free Electron Model for Aromatic Molecules 

The benzene molecule consists of a ring of six carbon atoms around which six 

delocalized   -electrons can circulate. A variant of the FEM for rings predicts the 

ground-state electron configuration which we can write as         ,as shown here: 

 

Figure 1. Free electron model for benzene. Dotted arrow shows the lowest-energy 

excitation. 

The longest wavelength absorption in the benzene spectrum can be estimated according 

to this model as 

   
  

 
       

  

  
        

The ring radius R can be approximated by the C-C distance in benzene, 1.39Å. We predict         , whereas the experimental 

absorption has              
 

 

 

 

 

 

The following sections to be lectured in details in the class 

 

CW: Particle in the 2D-3D box problem. 

CW: The lowest energy 

CW: Degeneracy. 
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Example: Free particles in a box--separable in Cartesin coordinates 

If the particle is confined in a box L
3
, clearly the wavefunction is given by 

         
 (

 

 
)

 
 
   

    

 
   

    

 
   

    

 
 

   and the energies are given by  

  
    

    
   

    
    

   

Thus there are three quantum numbers,          to denote a give state and since the energy depends is given by , there are 

degeneracy in that different eigenstates can have the same energy. (learn the degenerate states) 

Ground state energy of a particle in the 3D cubic box is 

     
    

    
    

A term “degenerate”  referring to the fact that two or more stationary states of the same quantum-mechanical system may have 

the same energy even though their wave functions are not the same. In this case the common energy level of the stationary states 

is degenerate. The statistical weight of the level is proportional to the order of degeneracy, that is, to the number of states with the 

same energy; this number is predicted from Schrödinger's equation. The energy levels of isolated systems (that is, systems with no 

external fields present) comprising an odd number of fermions (for example, electrons, protons, and neutrons) always are at least 

twofold degenerate. 

Example. The 6
th
 energy level of a particle in a 3D Cube box is 6-fold degenerate. 

a. What is the energy of the 7th energy level? (ans.  
    

         

b. What is the degeneracy of the 7th energy level? (ans. 3-fold) 

 

Filling the box with fermions (OPTIONAL) 

If we fill a cold box with N fermions, they will all go into different low-energy states. In fact, if the temperature is low enough, 

they will go into the lowest energy N states.  

If we fill up all the states up to some energy, that energy is called the Fermi energy. All the states with energies lower than    are 

filled, and all the states with energies larger than    are empty. Non zero temperature will put some particles in excited states, but, 

the idea of the Fermi energy is still valid. 

    

    
(  

    
    

 )  
    

    
  

     

Number of states within the radius 

   
 

 

 

 
   

  

the factor 2 is for spin of fermions, The factor of 1/8 indicates that we are just using one eighth of the sphere in n-space because 

all the quantum numbers must be positive.. The the fermi energy is: 

   
    

  
(
  

   
)

 
 

 
    

  
(
  

 
)

 
 
 

The total energy is 

    
 

 
∫     
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Degeneracy Pressure in Stars (OPTIONAL) 

The pressure exerted by fermions squeezed into a small box is what keeps cold stars from collapsing. White Dwarfs are held up by 

electrons and Neutron Stars are held up by neutrons in a much smaller box. We can compute the pressure from the dependence 

of the energy on the volume for a fixed number of fermions. 

     ⃗   ⃗⃗⃗⃗            

   
  

  
 

    

   
(
  

 
)

 
 
    

This is greater than pressure of the gravity. Thereforewe understand why stars does not collapse. This pressure also explain: 

 

 

Application: 1D potentials and physical systems 

In this chapter we will extend our study to the realistic physical systems modelled by approximate potentials. In the previous 

sections we have talked about infinite square well potentials, Coulomb and  Harmonic oscillator potentials.  

We now consider the situations that may arise when potential is low enough so that penetration of particles into classically 

forbidden regions is significant. 

 

Semi infinite square well (asymmetric square well) 

Rectangular potential with one side infinitely high, the other of depth   . Comparison is to the typical potential that binds and 

electron to a nucleus, or that binds a diatomic molecule (in which case the depth D is called the dissociation energy D). 
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The semi square well also resembles, in important ways, the potential that results when one combines the Coulomb potential with 

the "centrifugal potential" for discussion of the radial motion of an electron in a field of a point charge: 

   
 

 
 

 

  
 

Within the well solution of the Schrödinger equation gives us: 

                       √
   

  
 

The solution outside the well, in the region     , is of the form (at infinity the wave function will diverge then the solution 

      should be zero, D=0): 

                  √
        

  
 

We demand continuity in both the value and the slope of the state function at the boundary: 

                           

                           

From these boundary conditions it follows that 

         
 

 
    (√

   

  
 )   √

 

    
 

Solution of this equation for given    gives the energy values. This shows that particle; 

has discrete energy(energy quantized) 

tunneling (penetration of partcile) 

Example: Determine the allowed energy levels for a proton trapped in a semi-infinite square well of width 5.0 fm and depth 60 

MeV. (1fm=10
-15

 m, 1MeV=10
6
 eV, 1eV=1.6x10

-19
  J, mp=1.67x10

-27
 kg) 

Solution: We use a computer program to sketc graph of     (√
   

   ) and   √
 

    
 on the same plane. The intersect of lines 

gives energy values. Or we can obtain numerical solution. The result gives 3 energy values:                         . 
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Finite Potential well 

The finite potential well (also known as the finite square well) is an extension of the infinite potential well. We consider a 

particle is confined to a box, but one which has finite potential walls. Unlike the infinite potential well, there is a probability 

associated with the particle being found outside the box. The quantum mechanical interpretation is unlike the classical 

interpretation, where if the total energy of the particle is less than potential energy barrier of the walls it cannot be found outside 

the box. In the quantum interpretation, there is a non-zero probability of the particle being outside the box even when the energy 

of the particle is less than the potential energy barrier of the walls. 

Consider a standard one-dimensional square potential well, 

     {
            
                

 

  

Determine eigenfunctions and eigenvalues of the particle and analyze the given graphs. 

Wave function of the particle is given by 

           

                

          

Using continuity equations at x=0 and x=L 

                        

                                                 

In order to obtain energy relation from first equation you eliminate B and C 

  
  

    
    

    

    
  

Then second equation takes the form 
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                         (

    

    
            )           

From first part of the equations 

        (
    

    
          ) 

Substitute into second part 

 (
    

    
            )     (

    

    
          ) 

You can obtain 

     

      
            

         

    
         

Remember 

  √
   

 
        √

  

 
        

When      then    is imaginary then we obtain physical solution. We conclude that energy should be smaller than potential. 

Energy levels can be obtained by using Mathematica. (Use FindRoot[]) Before soving equation convert height of well    and 

energy  , to unit of    by substituting   
 

 
        

  

 
. 

Below the graphs are given for eigenvalues for different values of potentials and width of the well. Analyze them carefully. 

                                                            

Energy levels are given by:                      

 

In the large limit of    the well tends to the infinite well. Then the result is (        ). Energy levels are: 
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Scattering of Particles in One Dimension 

So far we have discovered that particles behave like waves, they obey the Schrödinger equation. This suggests that if we have an 

unknown potential it might be possible to determine its form if we can measure the probability of finding particles as a function of 

x. This obviously means we have to observe many particles in the potential. 

Much of our knowledge of atomic, nuclear and particle physics has been determined from experiments that exploit the ideas 

discussed in this section. 

Step Potential   

The one dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves.  

(Dashed lines are reflected wave and full lines are transmitted wave) 

 

Consider a particle of mass m and energy     interacting with the simple square barrier: 

      {
          
         

 

  { 
                  

                              
 

Where 

  √
   

 
        √

  

 
        

Continuity of the wave function at     give: 

                  

Solution of the equations for   and  : 

  
    

    
    

  

    
 

Reflection and transmission coefficients can be calculated as follows:   is the probability current density.  
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(  

  

  
  

   

  
) 

Then 

   
 

   
          

 

   
| |            

 

   
| |        

 

Reflection and transmission coefficients 

  
|  |

 

|  |
 

 
  
  

 | |  (
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|  |

 

|  |
 

 
  
  

 
  

 
 | |  

  

 
(

  

    
)

 

 

Where subscripts     and   stand for transmission, reflection and incident respectively.  

Since the current is a conserved quantity then 

         

 

We check that 

    (
    

    
)

 

 
  

 
(

  

    
)

 

   

For the step potential given in the figure, for the potentials 1, 5 and 9, Hartree, graph of the transmission and reflection 

coefficients are plotted. Analyze the graphs.(Maximum reflection points, maximum transmission points, critical points etc) 

(Dashed lines are reflected wave and full lines are transmitted wave) 

 

,,  

 

Potential Barrier(Dashed Lines are transmitted) 

Consider a particle of mass m and energy E>0 interacting with the simple potential barrier. Write down equations and analyze the 

given results. 
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Wave function of the particle is given by 

               

                  

         

Using continuity equations at x=0 and x=L 

                           

                                                   

In order to obtain transmission and reflection coefficients you must eliminate C and D and you must calculate B and F. This 

calculation carried out by hand. From first equation we calculate C and D interms of B then substitute them into second equation. 

Please do this calculation. Your result will be: 

   
              

                     
   

                    

                              
 

Reflection and transmission coefficients 

  
|  |
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  | |  

The barrier potential shown in the figure. For the potentials 1, 5 and 9 Hartree, and barrier width L=1 and 6 bohr graph of the 

transmission and reflection coefficients are plotted. Analyze the graphs.(Maximum reflection points, maximum transmission 

points, critical points, why are they oscillationg… etc) 
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,  

Consider a narrow barrier of width 0.1,0.6 and 1.1 Bohr. For 1, 5 and 9 hartree potentials, graph of the transmission and reflection 

coefficients are plotted. Analyze the graphs. Maximum reflection points, maximum transmission points, critical points, why are 

they oscillationg… etc) 
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,  

,  

Periodic potential-- the existence of energy gap 

Potential of a nucleus in the crystal is similar to the potential in the figure. 

 

It can be approximated to (Kronig-Penney model) 

 

Mathematical expression for the potential satisfies  
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We will show that the solution )()( xExH   can be written in the general form 

                                

This is called the Bloch's theorem, or more generally, the Floquet theory. 

Now if L is length of the Lattice                , we get a circular boundary condition 

                     
   

 
   (             

 

 
) 

Consider the approximated simple periodic potential: 

  {
           
                      

 

Solution of the Schrödinger equation for region           

                     √
   

  
 

For region       : 

           

                   
   √

        

  
 

Using boundary conditions: 

                               

After a tedious calculation we obtain: 

                  (      )  
     

   
          (      ) 

Further simplification 

                                  

We obtain  

                
    

   
        

Since the left hand side is bound between -1 and +1, the allowed values of k are restricted. For values of k that this equation can 

be satisfied, mkE 2/22  gives the allowed energies. The forbidden region gives the energy gap.  This leads to the band 

structure in periodic potentials. Here is a plot of the right-hand side of the above eq vs ka. 

Let us discuss 4 cases: (first substitute   
 

 
       

    

                          
     

    .  

The energy equation takes the form 

               
 

  
       

Free electron     Energy 

 

 

 

 

Nearly free electron model     
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Tight binding model      

 

 

Free atom model           
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