
Stress and Strain
Axial Loading
Part II



Statically Indeterminate Problems
• In the problems considered in the preceding section, we could always

use free-body diagrams and equilibrium equations to determine the
internal forces produced in the various portions of a member under
given loading conditions. There are many problems, however, where
the internal forces cannot be determined from statics alone. In most of
these problems, the reactions themselves—the external forces—
cannot be determined by simply drawing a free-body diagram of the
member and writing the corresponding equilibrium equations. The
equilibrium equations must be complemented by relationships
involving deformations obtained by considering the geometry of the
problem. Because statics is not sufficient to determine either the
reactions or the internal forces, problems of this type are called
statically indeterminate.



Concept Application 2.2

• A rod of length L, cross-sectional area A1, and modulus of elasticity E1, has 
been placed inside a tube of the same length L, but of cross-sectional area A2 
and modulus of elasticity E2 (Fig. 2.21a). 

• What is the deformation of the rod and tube when a force P is exerted on a 
rigid end plate as shown?

• The axial forces in the rod and in the tube are P1 and P2, respectively. From, 
Figure 2.21d.

• Clearly, one equation is not sufficient to determine the two unknown internal 
forces P1 and P2. The problem is statically indeterminate.

• However, the geometry of the problem shows that the deformations δ1 and 
δ2 of the rod and tube must be equal.

Either of deformation equations can be 
used to determine the common
deformation of the rod and tube.



Concept Application 2.3

• A bar AB of length L and uniform cross section is attached to rigid supports at A and B 
before being loaded. What are the stresses in portions AC and BC due to the 
application of a load P at point C (Fig. 2.22a)?

• Drawing the free-body diagram of the bar (Fig. 2.22b), the equilibrium equation is

• Since this equation is not sufficient to determine the two unknown reactions RA and 
RB, the problem is statically indeterminate.

• However, the reactions can be determined if observed from the geometry that the 
total elongation d of the bar must be zero. The elongations of the portions AC and BC 
are respectively δ1 and δ2, so

• Note from the free-body diagrams shown in parts b and c of Figure that P1 = RA and 
P2 = - RB. Carrying these values into deformation equation above,



Superposition Method

• A structure is statically indeterminate whenever it is held by more 
supports than are required to maintain its equilibrium. 

• This results in more unknown reactions than available equilibrium 
equations. It is often convenient to designate one of the reactions as 
redundant and to eliminate the corresponding support. Since the 
stated conditions of the problem cannot be changed, the redundant 
reaction must be maintained in the solution. It will be treated as an 
unknown load that, together with the other loads, must produce 
deformations compatible with the original constraints. The actual 
solution of the problem considers separately the deformations caused 
by the given loads and the redundant reaction, and by adding—or 
superposing—the results obtained. 



• σ𝐹 = 𝑅𝐴 + 100 − 𝑅𝐵 = 0

• 𝑅𝐵 − 𝑅𝐴 = 100 kN

100 kN

RBRA

100 kN

𝛿𝑇 = 0 𝛿𝑇 = 0

RB

𝛿𝑅𝐵



• The  following  two  conditions  must  be  satisfied  if  the  principle  of 
superposition is to be applied. 

• The loading P must be linearly related to the stress 𝜎 or displacement 𝛿 that is 
to be determined. 

• The loading must not significantly change the original geometry or 
configuration of the member. 



Concept Application 2.4

• Determine the reactions at A and B for the steel bar and loading shown in Fig. 2.23a, 
assuming a close fit at both supports before the loads are applied.

• We consider the reaction at B as redundant and release the bar from that support. The 
reaction RB is considered to be an unknown load and is determined from the condition that 
the deformation δ of the bar equals zero.

• The solution is carried out by considering the deformation δL caused by the given loads 
and the deformation δR due to the redundant reaction RB (Fig. 2.23b). Dividing the bar 
into four portions:

• Substituting these values into deformation equation 



Concept Application 2.4

• Considering now the deformation δR due to the redundant reaction RB, the bar is 
divided into two portions,

• Substituting these values into deformation equation

• Express the total deformation δ of the bar is zero



Concept Application 2.4

• Solving for RB, 

• The reaction RA at the upper support is obtained from the free-body diagram of the 
bar 



Problems Involving Temperature Changes

• Consider a homogeneous rod AB of uniform cross section that 

rests freely on a smooth horizontal surface. If the temperature of 

the rod is raised by ∆𝑇, the rod elongates by an amount 𝛿𝑇 that is 

proportional to both the temperature change ∆𝑇 and the length 

𝐿 of the rod. Here

where 𝛼 is a constant characteristic of the material called the coefficient of thermal expansion. 

Since 𝛿𝑇 and 𝐿 are both expressed in units of length, a represents a quantity per degree C or per degree F, 

depending whether the temperature change is expressed in degrees Celsius or Fahrenheit.

𝛿𝑇 = 𝛼 ∆𝑇 𝐿



• Associated with deformation 𝛿𝑇 there must be a strain 𝜀𝑇 = Τ𝛿𝑇 𝐿.

• The strain 𝜀𝑇 is called a thermal strain, as it is caused by the change in temperature of 
the rod. However, there is no stress associated with the strain 𝜺𝑻.

𝜀𝑇 = 𝛼∆𝑇



• Assume the same rod AB of length 𝐿 is placed between 

two fixed supports at a distance 𝐿 from each other. Again, 

there is neither stress nor strain in this initial condition.

• If we raise the temperature by ∆𝑇 , the rod cannot 

elongate because of the restraints imposed on its ends; 

the elongation 𝛿𝑇 of the rod is zero. Since the rod is 

homogeneous and of uniform cross section, the strain 𝜀𝑇 

at any point is 𝜀𝑇 = Τ𝛿𝑇 𝐿 and thus is also zero.



• However, the supports will exert equal and opposite 

forces 𝑃 and 𝑃′ on the rod after the temperature has 

been raised, to keep it from elongating. It follows that 

a state of stress (with no corresponding strain) is 

created in the rod.

• The problem created by the temperature change ∆𝑇 is 

statically indeterminate. Therefore, the magnitude 𝑃 of 

the reactions at the supports is determined from the 

condition that the elongation of the rod is zero. no 

corresponding strain) is created in the rod.



• The problem created by the temperature change ∆𝑇 is statically 

indeterminate. Therefore, the magnitude 𝑃 of the reactions at the 

supports is determined from the condition that the elongation of 

the rod is zero.

• Using the superposition method, the rod is detached from its 

support B and elongates freely as it undergoes the temperature 

change ∆𝑇. The corresponding elongation is

𝛿𝑇 = 𝛼 ∆𝑇 𝐿

• Applying now to end B the force P representing the redundant 

reaction, a second deformation is

𝛿𝑃 =
𝑃𝐿

𝐴𝐸



• Expressing that the total deformation d must be zero,

𝛿 = 𝛿𝑇 + 𝛿𝑃 = 𝛼 ∆𝑇 𝐿 +
𝑃𝐿

𝐴𝐸

• from which

𝑃 = −𝐴𝐸𝛼 ∆𝑇

• The stress in the rod due to the temperature change ∆𝑇 is

𝜎 =
𝑃

𝐴
= −𝐸𝛼 ∆𝑇



Concept Application 2.5

• Determine the values of the stress in portions AC and CB of the steel bar shown (Fig. 
2.28a) when the temperature of the bar is -50°C, knowing that a close fit exists at both of 
the rigid supports when the temperature is +25°C . Use the values E = 200 GPa and 
α=12*10-6 /°C for steel.

A = 400 mm2
A = 800 mm2

∆𝑇 = 𝑇𝐹 − 𝑇𝑂 = −50 − 25 = −75 °𝐶

Since the problem is statically indeterminate, detach the bar from its support at B and 
let it undergo the temperature change

The corresponding deformation 𝛿𝑇 = 𝛼 ∆𝑇 𝐿 = 12x10−6x −75 °𝐶 ∗ 0.6 𝑚

= −540x10−6 𝑚

Applying the unknown force RB at end B, 𝛿𝑅

𝛿𝑅 =
𝑃1𝐿1
𝐴1𝐸1

+
𝑃2𝐿2
𝐴2𝐸2

=
𝑅𝐵

200𝑥109 𝑃𝑎

0.3 𝑚

400x10−6𝑚2 +
0.3 𝑚

800x10−6𝑚2 = (5.625x10−9𝑚/𝑁)𝑹𝑩



Concept Application 2.5

A = 400 mm2
A = 800 mm2

Expressing that the total deformation of the bar must be zero as a result of the imposed 
constraints, write

𝛿 = −540x10−6 + (5.625x10−9𝑚/𝑁)𝑹𝑩=0

𝑹𝑩 = 96𝑥103𝑁 = 93 𝑘𝑁 The reaction at A is equal and opposite.

Noting that the forces in the two portions of the bar are 𝑃1 = 𝑃2 = 93 𝑘𝑁. Normal 
stress in portions AC and CB are

𝜎1 =
𝑃1

𝐴1
=

93𝑥103 𝑁

400𝑥10−6𝑚2 =240 MPa

𝜎2 =
𝑃2

𝐴2
=

93𝑥103 𝑁

800𝑥10−6 𝑚2 =120 MPa



Poisson’s Ratio

𝜎𝑥 =
𝑃

𝐴
and 𝜀𝑥 =

𝜎𝑥
𝐸

• The normal stresses on faces perpendicular to the y and 
z axes are zero: 𝜎𝑦 = 𝜎𝑧 = 0.

• It would be tempting to conclude that the corresponding 
strains 𝜀𝑦 and 𝜀𝑧 are also zero. This is not the case. 

In all engineering materials, the elongation produced by 
an axial tensile force P in the direction of the force is 
accompanied by a contraction in any transverse direction.



• In this section and the following sections, all materials are assumed to be both 

homogeneous and isotropic (i.e., their mechanical properties are independent of 

both position and direction). It follows that the strain must have the same value for 

any transverse direction. Therefore, 

𝜀𝑦 = 𝜀𝑧

• This common value is the lateral strain. An important constant for a given material 

is its Poisson’s ratio, named after the French mathematician Siméon Denis Poisson 

(1781–1840) and denoted by the Greek letter 𝜈 (nu).



• Note the use of a minus sign in these equations to obtain a positive value for 𝜈, 
as the axial and lateral strains have opposite signs for all engineering materials.

* It also would be tempting, but equally wrong, to assume that the volume of the rod remains unchanged as a result of 
the combined effect of the axial elongation and transverse contraction (see Sec. 2.6).
** However, some experimental materials, such as polymer foams, expand laterally when stretched. Since the axial and 
lateral strains have then the same sign, Poisson’s ratio of these materials is negative. (See Roderic Lakes, “Foam 
Structures with a Negative Poisson’s Ratio,” Science, 27 February 1987, Volume 235, pp. 1038–1040.)



Concept Application 2.7

• A 500-mm-long, 16-mm-diameter rod made of a homogenous, isotropic material is 
observed to increase in length by 300 μm, and to decrease in diameter by 2.4 μm when 
subjected to an axial 12-kN load. Determine the modulus of elasticity and Poisson’s ratio 
of the material.

The cross-sectional area of the rod is

Choosing the x axis along the axis of the rod (Fig. 2.31), write

From Hooke’s law, modulus of elasticty (E) is:

From Poisson’s ratio equation:



Multiaxial Loading: Generalized Hooke’s Law

• All the examples considered so far in this chapter have dealt with slender 
members subjected to axial loads, i.e., to forces directed along a single axis. 

• Consider now structural elements subjected to loads acting in the directions of the 
three coordinate axes and producing normal stresses 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 that are all 
different from zero. This condition is a multiaxial loading.

Note that this is not the general stress condition, 
since no shearing stresses are included among the 
stresses.



• Consider an element of an isotropic material in the shape 
of a cube. Assume the side of the cube to be equal to 
unity, since it is always possible to select the side of the 
cube as a unit of length. 

• Under the given multiaxial loading, the element will 
deform into a rectangular parallelepiped of sides equal to 
1 + 𝜀𝑥, 1 + 𝜀𝑦, and 1 + 𝜀𝑧, where 𝜀𝑥, 𝜀𝑦, and 𝜀𝑧 denote 
the values of the normal strain in the directions of the 
three coordinate axes.



• In order to express the strain components 𝜀𝑥, 𝜀𝑦, 𝜀𝑧 in terms of the stress components 𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 

consider the effect of each stress component and combine the results. This approach will be used 

repeatedly in this text, and is based on the principle of superposition. 

• This principle states that the effect of a given combined loading on a structure can be obtained by 

determining the effects of the various loads separately and combining the results, provided that 

the following conditions are satisfied:

• Each effect is linearly related to the load that produces it.

• The deformation resulting from any given load is small and does not affect the conditions of 

application of the other loads.

• For multiaxial loading, the first condition is satisfied if the stresses do not exceed the proportional 

limit of the material, and the second condition is also satisfied if the stress on any given face does 

not cause deformations of the other faces that are large enough to affect the computation of the 

stresses on those faces.



• Considering the effect of the stress component 𝜎𝑥,

• Similarly, the stress component 𝜎𝑦,

• and the stress component 𝜎𝑧,

- a positive value for a stress component signifies tension and a 
negative value compression

- a positive value for a strain component indicates expansion in 
the corresponding direction and a negative value contraction

Generalized Hooke’s law for the multiaxial loading of a 
homogeneous isotropic material

𝜀𝑥 =
𝜎𝑥
𝐸
− 𝜈

𝜎𝑦

𝐸
− 𝜈

𝜎𝑧
𝐸

𝜀𝑦 =
𝜎𝑦

𝐸
− 𝜈

𝜎𝑥
𝐸
− 𝜈

𝜎𝑧
𝐸

𝜀𝑧 =
𝜎𝑧
𝐸
− 𝜈

𝜎𝑥
𝐸
− 𝜈

𝜎𝑦

𝐸

𝜀𝑥 =
𝜎𝑥
𝐸

and 𝜀𝑦 = −𝜈
𝜎𝑥
𝐸

and 𝜀𝑧 = −𝜈
𝜎𝑥
𝐸

𝜀𝑦 =
𝜎𝑦

𝐸
and 𝜀𝑥 = −𝜈

𝜎𝑦

𝐸
and 𝜀𝑧 = −𝜈

𝜎𝑦

𝐸

𝜀𝑧 =
𝜎𝑧
𝐸

and 𝜀𝑥 = −𝜈
𝜎𝑧
𝐸

and 𝜀𝑦 = −𝜈
𝜎𝑧
𝐸

Combining the results, the components of strain corresponding 

to the given multiaxial loading are



Concept Application 2.8

The steel block shown (Fig. 2.34) is subjected to a uniform pressure on all its faces. Knowing 
that the change in length of edge AB is -1.2 * 10-3 in., determine (a) the change in length of 
the other two edges and (b) the pressure p applied to the faces of the block. Assume E = 
29*106 psi and ν=0.29.

a. Change in Length of Other Edges. Substituting σx= σ y=σ z=-p into strain equantions
in multi-axial loading case, the three strain components have the common value

b. Pressure. Solving Eq. (1) for p,

(1) 



DILATATION AND BULK MODULUS

deformedundeformed



Volume of deformed unity cube

Since the strains are much smaller than unity, their products can be omitted

The change in volume e of the element is

or

e represents the change in volume per unit volume and is called the dilatation of the 
material.



Substitute strains to the e equation

When a body is subjected to a uniform hydrostatic pressure p, each of the stress 
components is equal to -p

or

The constant k is known as the bulk modulus or modulus of compression of the material



Because a stable material subjected to a hydrostatic pressure can only decrease in volume, 

the dilatation e is negative, and the bulk modulus k is a positive quantity. Referring from

bulk modulus that

or

Poisson’s ratio (ν) is positive for all engineering materials. Thus, for any engineering 

material,



Concept Application 2.9

Determine the change in volume DV of the steel block shown in Figure, when it is subjected 
to the hydrostatic pressure p=180 MPa. Use E = 200 GPa and ν=0.29.

From  the bulk modulus of steel is

And the dilatation is

Since the volume V of the block in its unstressed state is

and e represents the change in volume per unit volume,

80 mm 60 mm

40 mm



SHEARING STRAIN

• In a general stress situation, shown in figure, shearing 

stresses 𝜏𝑥𝑦, 𝜏𝑦𝑧, and 𝜏𝑧𝑥 are present (as well as the 

corresponding shearing stresses 𝜏𝑦𝑥, 𝜏𝑧𝑦, and 𝜏𝑥𝑧). 

• These stresses have no direct effect on the normal 

strains and, as long as all the deformations involved 

remain small, they will not affect the derivation nor 

the validity of Generalized Hooke’s law for the 

multiaxial loading.



• The shearing stresses, however, tend to deform a cubic element of material into an 
oblique parallelepiped.

• Consider a cubic element subjected to only the shearing stresses 𝜏𝑥𝑦 and 𝜏𝑦𝑥 
applied to faces of the element respectively perpendicular to the x and y axes. 
(Recall that 𝜏𝑥𝑦 = 𝜏𝑦𝑥) The cube is observed to deform into a rhomboid of sides 
equal to one 

Unit cubic element subjected to 
shearing stress.

Deformation of unit cubic 
element due to shearing stress.



Two of the angles formed by the four faces under 

stress are reduced from ( Τ𝜋 2) to ( Τ𝜋 2− 𝛾𝑥𝑦), 

while the other two are increased from ( Τ𝜋 2) to 

( Τ𝜋 2+ 𝛾𝑥𝑦). 

The small angle 𝛾𝑥𝑦 (expressed in radians) defines 

the shearing strain corresponding to the x and y 

directions. 

When the deformation involves a reduction of 

the angle formed by the two faces oriented 

toward the positive x and y axes, the shearing 

strain 𝛾𝑥𝑦 is positive; otherwise, it is negative.



• Plotting successive values of 𝜏𝑥𝑦 against the corresponding values of 𝛾𝑥𝑦, the 

shearing stress-strain diagram is obtained for the material. This diagram is similar 

to the normal stress-strain diagram from the tensile test described earlier; 

however, the values for the yield strength, ultimate strength, etc., are about half as 

large in shear as they are in tension. As for normal stresses and strains, the initial 

portion of the shearing stress-strain diagram is a straight line. For values of the 

shearing stress that do not exceed the proportional limit in shear, it can be written 

for any homogeneous isotropic material that

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦

• This relationship is Hooke’s law for shearing stress and strain, and the constant G is 

called the modulus of rigidity or shear modulus of the material.



𝜏𝑦𝑧 = 𝐺𝛾𝑦𝑧 and 𝜏𝑥𝑧 = 𝐺𝛾𝑥𝑧

For values of the stress that do not exceed the proportional limit, you can write 
two additional relationships:



• For the general stress condition, as long as none of the stresses involved exceeds the 

corresponding proportional limit,  you  can  apply  the  principle  of  superposition  and  

combine  the results.

• The generalized Hooke’s law for a homogeneous isotropic material under the most general 

stress condition is

𝜀𝑥 =
𝜎𝑥
𝐸
− 𝜈

𝜎𝑦

𝐸
− 𝜈

𝜎𝑧
𝐸

𝜀𝑦 =
𝜎𝑦

𝐸
− 𝜈

𝜎𝑥
𝐸
− 𝜈

𝜎𝑧
𝐸

𝜀𝑧 =
𝜎𝑧
𝐸
− 𝜈

𝜎𝑥
𝐸
− 𝜈

𝜎𝑦

𝐸

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦 𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦 𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦



Deformations Under Axial Loading — Relation Between 
𝐸, 𝜈, And 𝐺

• For an isotropic homogenous material, two of the material constant must
be determined by conducting mechanic tests, and the third one can be 
calculated by using the relationship :

𝐺 =
𝐸

2(1 + 𝜈)
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