
CH.2 STRESS AND
STRAIN
AXIAL LOADING
Part I



Objectives

• Concept of strain.

• Relationship between stress and strain in different materials.

• Determine the deformation of structural components under axial 
loading.

• Hooke’s Law and the modulus of elasticity.

• Concept of lateral strain and Poisson's ratio.

• Solve indeterminate problems using axial deformations.

• Saint-Venant’s principle and the distribution of stresses.



• From the load-displacement diagrams we can obtain useful informations to
the analysis of the rod for the BC rod. But, can it be used to predict the
deformation of a rod of the same material but with different dimensions?



• In both cases, the ratio of the deformation over the length of the rod is 
the same at Τ𝛿 𝐿.



• Here, we have a new term. Deformation per unit length in a rod under axial

loading is called as normal strain.

• The normal strain, 𝜀 (Greek letter epsilon), is 𝜀 =
𝛿

𝐿

• Since deformation and length are expressed in the same units, the normal

strain 𝜀 obtained by dividing 𝛿 by L is a dimensionless quantity.

• Plotting the stress 𝜎 =
𝑃

𝐴
against the strain 𝜀 =

𝛿

𝐿
results in a curve that is

characteristic of the properties of the material but does not depend upon the

dimensions of the specimen used. This curve is called a stress-strain diagram.



• If the rod has a uniform cross section of area A, the

normal stress 𝜎 is assumed to have a constant value Τ𝑃 𝐴

throughout the rod. The strain 𝜀 is the ratio of the total

deformation 𝛿 over the total length L of the rod.

• If the rod has a variable cross-sectional area A, the

normal stress 𝜎 = Τ𝑃 𝐴 varies along the member, and it is

necessary to define the strain at a given point 𝑄 by

considering a small element of undeformed length ∆𝑥.

Denoting the deformation of the element under the given

loading by ∆𝛿, the normal strain at point 𝑄 is defined as

𝜀 = lim
∆𝑥→0

∆𝛿

∆𝑥
=
𝑑𝛿

𝑑𝑥



Stress-Strain Diagram
• To obtain the stress-strain diagram of a material, 

a tensile test is conducted on a specimen of the 
material.

• The cross-sectional area of the cylindrical central 
portion of the specimen is accurately 
determined and two gage marks are inscribed on 
that portion at a distance 𝐿0 from each other. 

• The distance 𝐿0 is known as the gage length of 
the specimen.



Tensile Testing Procedure

• The test specimen is then placed in a testing 

machine, which is used to apply a centric load P. 

As load P increases, the distance L between the 

two gage marks also increases. The distance L is 

measured with a dial gage, and the elongation 

𝛿 = 𝐿 − 𝐿0 is recorded for each value of P. A 

second dial gage is often used simultaneously to 

measure and record the change in diameter of 

the specimen.

From each pair of readings P and 𝛿, the engineering stress 𝜎 is

𝜎 =
𝑃

𝐴0
and the engineering strain 𝜀 is

𝜀 =
𝛿

𝐿0

Stress-Strain Diagram



• The stress-strain diagram can be obtained by plotting 𝜀 as an abscissa 
and 𝜎 as an ordinate.

• Stress-strain diagrams of materials vary widely, and different tensile 
tests conducted on the same material may yield different results, 
depending upon the temperature of the specimen and the speed of 
loading. However, some common characteristics can be distinguished 
from stress-strain diagrams to divide materials into two broad 
categories: ductile and brittle materials.



Stress-strain diagrams of two typical ductile materials

Cup-and-
cone
fracture

Necking



Stress-strain diagram of a typical brittle material

Flat
fracture
surface



• A standard measure of the ductility of a material is its percent elongation:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 = 100
𝐿𝐵 − 𝐿0
𝐿0

where 𝐿0 and 𝐿𝐵 are the initial length of the tensile test specimen and its final length at 

rupture, respectively.

• Another measure of ductility that is sometimes used is the percent reduction in area:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑎𝑟𝑒𝑎 = 100
𝐴0 − 𝐴𝐵

𝐴0

where 𝐴0 and 𝐴𝐵 are the initial cross-sectional area of the specimen and its minimum cross-

sectional area at rupture, respectively.



Determination of Yield Strength

The yield strength (σy​) is the stress at which permanent deformation begins.



True Stress and True Strain

• Engineering stress 𝜎 =
𝑃

𝐴0

• True stress 𝜎𝑡 =
𝑃

𝐴

• The difference between the engineering stress 𝜎 and the true stress 𝜎𝑡
becomes apparent in ductile materials after yield has started. 

• While the engineering stress 𝜎, which is directly proportional to the load 𝑃, 
decreases with 𝑃 during the necking phase, the true stress 𝜎𝑡, which is 
proportional to 𝑃 but also inversely proportional to 𝐴 (instantaneous area), 
keeps increasing until rupture of the specimen occurs.



• For engineering strain 𝜀 = Τ𝛿 𝐿0, instead of using the total elongation 𝛿 and the original 

value 𝐿0 of the gage length, many scientists use all of the values of 𝐿 that they have 

recorded. Dividing each increment ∆𝐿 of the distance between the gage marks by the 

corresponding value of 𝐿, the elementary strain ∆𝜀 = Τ∆𝐿 𝐿. Adding the successive values 

of ∆𝜀, the true strain 𝜀𝑡 is

𝜀𝑡 =෍∆𝜀 =෍( Τ∆𝐿 𝐿)

• With the summation replaced by an integral, the true strain can be expressed as:

𝜀𝑡 = න

𝐿0

𝐿
𝑑𝐿

𝐿
= ln

𝐿

𝐿0



Hooke’s Law; Modulus of Elasticity

• Most engineering structures are designed to undergo 

relatively small deformations, involving only the 

straight-line portion (elastic region) of the

corresponding stress-strain diagram. For that initial 

portion of the diagram, the stress 𝜎  is directly 

proportional to the strain 𝜀:

𝜎 = 𝐸𝜀

• This is known as Hooke’s law.

•  The coefficient 𝐸 of the material is the modulus of 

elasticity or Young’s modulus.



Deformations of Members Under Axial Loading

• If the resulting axial stress 𝜎 = Τ𝑃 𝐴 does not exceed the proportional 

limit of the material, Hooke’s law applies and

𝜎 = 𝐸𝜀

• from which

𝜀 =
𝜎

𝐸
=

𝑃

𝐴𝐸

• Recalling that the strain 𝜀 =
𝛿

𝐿
and substituting 𝜀 =

𝑃

𝐴𝐸
into 𝛿 = 𝜀𝐿

gives

𝜹 =
𝑷𝑳

𝑨𝑬

Deformation of Members Under
Axial Loading



• Equation 𝛿 =
𝑃𝐿

𝐴𝐸
 can be used only if the rod is homogeneous (constant 𝐸), has a 

uniform cross section of area 𝐴, and is loaded at its ends. 

• If the rod is loaded at other points, or consists of several portions of various cross 

sections and possibly of different materials, it must be divided into component 

parts that satisfy the required conditions.

• Using the internal force 𝑃𝑖, length 𝐿𝑖, cross-sectional area 𝐴𝑖, and modulus of 

elasticity 𝐸𝑖, corresponding to part i, the deformation of the entire rod is

𝛿 =෍

𝑖

𝑃𝑖𝐿𝑖
𝐴𝑖𝐸𝑖

Deformation of Graded Members 
Under Axial Loading



• In the case of a member of variable cross section, the strain 𝜀 depends upon the 

position of the point 𝑄, where it is computed as 𝜀 = Τ𝑑𝛿 𝑑𝑥. Solving for 𝑑𝛿 and 

substituting for 𝜀 from 𝜀 = Τ𝑃 𝐴𝐸, the deformation of an element of length 𝑑𝑥 is

𝑑𝛿 = 𝜀𝑑𝑥 =
𝑃𝑑𝑥

𝐴𝐸

The total deformation 𝛿 of the member is obtained 

by integrating this expression over the length 𝐿 of the 

member:

𝛿 = න

0

𝐿
𝑃𝑑𝑥

𝐴𝐸



Example 2.1
The rigid bar BDE is supported by two links AB and CD. 

Link AB is made of aluminum (E=70 GPa) and has a 

cross-sectional area of 500 mm2. Link CD is made of 

steel (E= 200 GPa) and has a cross-sectional area of 

600 mm2. For the 30-kN force shown, determine the 

deflection (a) of B, (b) of D, and (c) of E.



Example 2.1
STRATEGY: Consider the free body of the rigid bar to determine the internal force 
of each link. Knowing these forces and the properties of the links, their 
deformations can be evaluated. You can then use simple geometry to determine 
the deflection of E.
MODELING: Draw the free body diagrams of the rigid bar and the two links

ANALYSIS: 



Example 2.1
ANALYSIS: 

Free Body: Bar BDE (Fig. 1)

a. Deflection of B. Since the internal force in link AB is 
compressive (Fig. 2), P = -60 kN and

The negative sign indicates a 
contraction of member AB. 
Thus, the deflection of end B 
is upward:



Example 2.1
ANALYSIS: 

b. Deflection of D. Since in rod CD (Fig. 3), P = 90 kN, write

c. Deflection of E. Referring to Fig. 4, we denote by 
B’ and D’ the displaced positions of points B and D. 
Since the bar BDE is rigid, points B’, D’, and E’ lie in 
a straight line. Therefore,
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