
ME 240
Computation for

Mechanical
Engineering

Lecture 4

C++ Data Types

Introduction

In this lecture we will learn some fundamental elements of C++:

Introduction

Data Types

IdentifiersIdentifiers

Variables

Constants

NOTE THAT

The C and C++ programming languages are quite different from

each other, even though they share some common syntax.

Data Types

A data type determines the type of the data that will be stored,

in the computer memory (RAM).

C++ provides 6
fundamental
data types:

There are also some qualifiers that
can be put in front of the numerical
data types to form derivatives:

char

int

float

double

bool

wchar_t

data types to form derivatives:

short , long , signed , unsigned

For example:

short int

unsigned char

The table below shows the fundamental data types in C++, as well as the range of values.

The red coloured int and double data types are all you needin basic level programming.

Notes:

1. The unqualified char , short , int , (long int) are signed by

default.

2. You don’t need to write int after using short and long2. You don’t need to write int after using short and long
keywords. i.e.

short s; means short int s;

long k; means long int k;

Identifiers
An identifier is a string of alphanumeric characters. It is used for

naming variables, constants, functions, structures and classes.

A valid identifier

� must begin with a letter or underscore (_),

� can consist only of letters (a-z , A-Z), digits(0-9), and underscores.

� should not match with any C++ reserved keywords which are:� should not match with any C++ reserved keywords which are:

asm, auto, bool, break, case, catch, char, class, c onst,
const_cast, continue, default, delete, do, double,
dynamic_cast, else, enum, explicit, export, extern, false,
float, for, friend, goto, if, inline, int, long, mu table,
namespace, new, operator, private, protected, publi c,
register, reinterpret_cast, return, short, signed, sizeof,
static, static_cast, struct, switch, template, this , throw,
true, try, typedef, typeid, typename, union, unsign ed,
using, virtual, void, volatile, wchar_t, while

while the following are not valid:
2ndBit

speed of light

yağmur

c++

float

According to these rules, the
following are valid identifiers:

mass

peynir

pos12

speed_of_light

SpeedOfLight

isPrime

Remember to use only the English alphabet:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Note that C++ is case sensitive.

That is, it distinguishes between uppercase and lowercase letters.

So, Food and food are different identifiers.

Variables

� A variable is a symbolic name given to a value and is associated with
a data storage location in the computer’s memory.

� A variable’s name has to be a valid identifier.

� A variable must be declared before it is used. � A variable must be declared before it is used.

� When declaring a variable, you must tell the compiler what kind of
variable it is; int , char , double , …

� A variable has a limited scope within a program section where it is
visible and accessible.

� Example declarations

� When a variable is declared, you can initialize it in two

int i, j;

long k;

float w, x, y, z;

double speed, dragForce;

� When a variable is declared, you can initialize it in two
alternative but equivalent ways

or

int cake = 122;

int cake(122);

Example Program: Declaration and manipulation of variables

#include <iostream>
using namespace std;

int main () {

short x = 22, y = 11, z;
z = x – y;
cout << "z = " << z << endl;

int p = 3;
int q = x*y*z - 2*p;
cout << "q = " << q << endl;

return 0;

} Output:
z = 11
q = 2656

Example Program: The scope of variables

#include <iostream>
using namespace std;

int k = 11; this k is global (visible throughout the whole program
including in any other functions defined in the program)

int main ()
{

int k = 22; this k is local in the main() function block
{ {

int k = 33; this k is local inside this block
cout << "Inside internal block: k = " << k << endl;

}
cout << "Inside main(): k = " << k << endl;
cout << "Global k = " << ::k << endl;

} Output
Inside internal block: k = 33
Inside main(): k = 22
Global k = 11

Constants

� To help promote safety, variables can be made constant with the const
qualifier. Since const variables cannot be assigned during execution, they must
be initialized at the point of declaration.

Here, pi is a type double variable storing the value 3.14159265358979

(remember type double variables store floating values to about 15 digit precision).

The const qualifier tells the compiler to not allow us to change

const double pi = 3.14159265358979;

The const qualifier tells the compiler to not allow us to change

the value of the variable during execution of the program.

� Symbolic constants are defined via the #define preprocessor directive.

Here the preprocessor (before compilation) replaces any occurrences of pi

with the literal constant 3.14159265358979 . But this can be dangerous!

#define pi 3.14159265358979

� Integer literal constants can be represented by three different bases:
base-10 (decimal), base-8 (octal) and base-16 (hexadecimal)

i = 75; base-10 (default)

i = 0113; base-8 representation of decimal 75

i = 0x4B; base-16 representation of decimal 75

Representation of Integer and Floating

Point Numbers

� Floating point literals express numbers with decimals and/or exponents.
The symbol E or e is used in the exponent.

i = 0x4b; is also base-16

x = 123.456; decimal floating-point number

x = 1234.56e-1; exponent (means 1234.56 x 10-1)

c = 1.6E-19; exponent (means 1.6 x 10-19)

A = 6.02e23; exponent (means 6.02x1023)

SOME OF PRINTABLE ASCII CHARACTERS

char

� C++ represents character values as numeric codes

� A variable of data type char can store a single character

� To represent a character constant in a program, we enclose the character in single
quotes (apostrophes):

'A' 'b' ' ' ';'

� Since characters are represented by integer codes , C++ permits conversion of type� Since characters are represented by integer codes , C++ permits conversion of type
char to type int and vice versa

� For example, you could use the following fragment to find out the code your
implementation uses for a question mark:

int qmarkCode= '?';

cout << "Code for ? = " << qmarkCode << endl;

Strings

� One of the C++ standard libraries provides a data type string to represent a group
of characters.

� Use of this data type requires inclusion of the preprocessor directive:

#include <string>

� String variables and name constants are declared, initialized, input, and displayed in a
manner comparable to numbers and charactersmanner comparable to numbers and characters

� Notice that you must use double quotes to enclose a string's value in a program,
and you may include any of the special characters discussed earlier.

� For example:

string a,b;
a="Sample 1";
b="Sample 2";
cout<<"a="<<a<<endl;
cout<<"b="<<b<<endl;

Escape codes

There are additional character literals called escape codes or escape sequences which are
preceded by a backslash (\):

Escape Code Description Example

\a alert (beep) cout << "Error !\a";

\b backspace cout<<"Gazia\b antep";

\ r return to cout <<" gaziantep \ rG";\ r return to cout <<" gaziantep \ rG";

column 1

\n newline cout <<'Gazi\nantep';

\t horizontal tab cout << x << '\t' << y;

\' quote cout << "Gaziantep\' te ";

\\ backslash cout << "Gaziantep\Sahinbey";

Boolean Literals

� C++ defines a data type named bool that has only two possible values true and
false.

� This is the type of the conditional expressions, such as

� x > 100 and y < = 0, that we will study in selective structures structures.

� Sometimes a program uses a variable of type bool to keep track of whether a � Sometimes a program uses a variable of type bool to keep track of whether a

certain event has occurred.

� The variable will be initialized to false, and after the event occurs the variable
will be set to true.

int main(){
bool a,b;
a=true;
b=1>2;
cout<<"a="<<a<<endl;
cout<<"b="<<b<<endl;

