
Ch.4 PURE BENDING
Part I



Objectives

Understand the bending behavior

Define the deformations, strains, and normal stresses in beams subject to pure bending

Describe the behavior of composite beams made of more than one material

Analyze members subject to eccentric axial loading, involving both axial stresses and bending stresses

Review beams subject to unsymmetric bending, i.e., where bending does not occur in a plane of symmetry

Study bending of curved members



INTRODUCTION

Bending is a major concept used in the design of

many machine and structural components, such as

beams and girders.

This chapter is devoted to the analysis of prismatic

members subjected to equal and opposite couples

𝑀 and 𝑀′ acting in the same longitudinal plane.

Such members are said to be in pure bending. The

members are assumed to possess a plane of

symmetry with the couples 𝑀 and 𝑀′ acting in that

plane.



• An example of pure bending is provided by the bar of a

typical barbell as it is held overhead by a weightlifter as

shown in the photo.

• The bar carries equal weights at equal distances from the

hands of the weightlifter. Because of the symmetry of the

free-body diagram of the bar, the reactions at the hands

must be equal and opposite to the weights.

• Therefore, as far as the middle portion CD of the bar is

concerned, the weights and the reactions can be replaced

by two equal and opposite 960-lb·in. couples, showing that

the middle portion of the bar is in pure bending.



• Photo shows a 12-in. steel bar clamp used to exert 150-lb forces on two pieces of lumber as they are

being glued together. Figure (left) shows the equal and opposite forces exerted by the lumber on the

clamp. These forces result in an eccentric loading of the straight portion of the clamp. In Figure (right), a

section CC’ has been passed through the clamp and a free-body diagram has been drawn of the upper

half of the clamp. The internal forces in the section are equivalent to a 150-lb axial tensile force 𝑃 and a

750-lb·in. couple 𝑀. By combining our knowledge of the stresses under a centric load and the results of

an analysis of stresses in pure bending, the distribution of stresses under an eccentric load is obtained.



• The study of pure bending plays an essential role in the study of beams

(i.e., prismatic members) subjected to various types of transverse loads.

• Consider a cantilever beam AB supporting a concentrated load 𝑃 at its

free end. If a section is passed through C at a distance 𝑥 from A, the

free-body diagram of AC shows that the internal forces in the section

consist of a force P’ equal and opposite to 𝑃 and a couple M of

magnitude 𝑀 = 𝑃𝑥. The distribution of normal stresses in the section

can be obtained from the couple M as if the beam were in pure

bending.

• The shearing stresses in the section depend on the force P’, and their

distribution over a given section is discussed in the next chapter.



Symmetric Members In Pure Bending

Internal Moment and Stress Relations

• Consider a prismatic member AB possessing a plane of symmetry and subjected to equal

and opposite couples M and M’ acting in that plane. If a section is passed through the

member AB at some arbitrary point C, the conditions of equilibrium of the portion AC of

the member require the internal forces in the section to be equivalent to the couple M.

The moment M of that couple is the bending moment in the section.



• Denoting by 𝜎𝑥 the normal stress at a given point of the cross section and by 𝜏𝑥𝑦 and 𝜏𝑥𝑧

the components of the shearing stress, we express that the system of the elementary

internal forces exerted on the section is equivalent to the couple M.



• Recall from statics that a couple M actually consists of two equal and opposite forces. The sum of the

components of these forces in any direction is therefore equal to zero. Moreover, the moment of the

couple is the same about any axis perpendicular to its plane and is zero about any axis contained in that

plane. Selecting arbitrarily the z axis shown in figure, the equivalence of the elementary internal forces

and the couple M is expressed by writing that the sums of the components and moments of the forces

are equal to the corresponding components and moments of the couple M:



• Three additional equations could be obtained by setting equal to zero the sums of the y

components, z components, and moments about the x axis, but these equations would involve

only the components of the shearing stress and, as you will see in the next section, the

components of the shearing stress are both equal to zero.



• Two remarks should be made at this point:

• The minus sign in (𝑦𝜎𝑥𝑑𝐴−)׬ = 𝑀 is due to the fact that a tensile stress (𝜎𝑥 > 0) leads to a

negative moment (clockwise) of the normal force 𝜎𝑥𝑑𝐴 about the z axis.

• ׬ 𝑧𝜎𝑥𝑑𝐴 = 0 could have been anticipated, since the application of couples in the plane of

symmetry of member AB result in a distribution of normal stresses symmetric about the y axis.



• Once more, note that the actual distribution of stresses in a given cross section cannot

be determined from statics alone. It is statically indeterminate and may be obtained only

by analyzing the deformations produced in the member



Deformations

• A prismatic member possessing a plane of symmetry are

subjected to equal and opposite couples M and M’ at its ends

acting in the plane of symmetry.

• The member will bend under the action of the couples but will

remain symmetric with respect to that plane. Moreover, since

the bending moment M is the same in any cross section, the

member will bend uniformly.



• The line AB along the upper face of the member intersecting the

plane of the couples will have a constant curvature. In other

words, the line AB will be transformed into a circle of center C,

as will the line A’B’ along the lower face of the member.

• Note that the line AB will decrease in length when the member

is bent (i.e., when 𝑀 > 0), while A’B’ will become longer.



• The cross-section perpendicular to the axis of the member remains plane, and
that the plane of the section passes through C.

• Suppose that the member is divided into a large number of small cubic
elements with faces respectively parallel to the three coordinate planes.

• Since all the faces represented in the two projections of figures are at 90° to
each other, we conclude that 𝛾𝑥𝑦 = 𝛾𝑧𝑥 = 0 and, thus, that 𝜏𝑥𝑦 = 𝜏𝑧𝑥 = 0.

• Regarding the three stress components that we have not yet discussed,
namely, 𝜎𝑦, 𝜎𝑧, and 𝜏𝑦𝑧, we note that they must be zero on the surface of the
member.

• We conclude that the only nonzero stress component exerted on any of the
small cubic elements considered here is the normal component 𝜎𝑥. Thus, at
any point of a slender member in pure bending, we have a state of uniaxial
stress.



• Recalling that, for 𝑀 > 0, lines AB and A’B’ are observed, respectively, to
decrease and increase in length, we note that the strain 𝜀𝑥 and the stress 𝜎𝑥
are negative in the upper portion of the member (compression) and positive
in the lower portion (tension).

It follows from above that a surface parallel to the upper and lower faces of the member
must exist where 𝜀𝑥 and 𝜎𝑥 are zero. This surface is called the neutral surface. The neutral
surface intersects the plane of symmetry along an arc of circle DE, and it intersects a
transverse section along a straight line called the neutral axis of the section.



• Denoting by 𝜌 the radius of arc DE, by 𝜃 the central angle corresponding to DE, and observing that the

length of DE is equal to the length 𝐿 of the undeformed member, we write

𝐿 = 𝜌𝜃

• Considering the arc JK located at a distance 𝑦 above the neutral surface, its length 𝐿′ is

𝐿′ = (𝜌 − 𝑦)𝜃

• Since the original length of arc JK was equal to L, the deformation of JK is

𝛿 = 𝐿′ − 𝐿 = 𝜌 − 𝑦 𝜃 − 𝜌𝜃 = −𝑦𝜃

• The longitudinal strain 𝜀𝑥 in the elements of JK is obtained by dividing 𝛿 by the original length 𝐿 of JK.

Write

𝜀𝑥 =
𝛿

𝐿
=
−𝑦𝜃

𝜌𝜃
= −

𝑦

𝜌

• The minus sign is due to the fact that it is assumed the bending moment is positive, and thus the beam is

concave upward.



• Because of the requirement that transverse sections remain plane, identical deformations occur in

all planes parallel to the plane of symmetry. Thus, the value of the strain given by 𝜀𝑥 = −
𝑦

𝜌
is valid

anywhere, and the longitudinal normal strain 𝜀𝑥 varies linearly with the distance 𝑦 from the

neutral surface.



• The strain 𝜀𝑥 reaches its maximum absolute value when 𝑦 is largest. Denoting the largest

distance from the neutral surface as 𝑐 (corresponding to either the upper or the lower surface of

the member) and the maximum absolute value of the strain as 𝜀𝑚, we have

𝜀𝑚 =
𝑐

𝜌

• and we can write that

𝜀𝑥 = −
𝑦

𝑐
𝜀𝑚

• To compute the strain or stress at a given point of the member, we must first locate the neutral

surface in the member. To do this, we must specify the stress-strain relation of the material used.



Stresses and Deformations In The Elastic Range

• We now consider the case when the bending moment 𝑀 is such that the normal stresses

in the member remain below the yield strength 𝜎𝑌. This means that the stresses in the

member remain below the proportional limit and the elastic limit as well. There will be no

permanent deformation, and Hooke’s law for uniaxial stress applies. Assuming the

material to be homogeneous and denoting its modulus of elasticity by 𝐸, the normal

stress in the longitudinal 𝑥 direction is

𝜎𝑥 = 𝐸𝜀𝑥



• Recalling 𝜀𝑥 = −
𝑦

𝑐
𝜀𝑚 and multiplying both members by 𝐸, we write

𝐸𝜀𝑥 = −
𝑦

𝑐
𝐸𝜀𝑚 or 𝜎𝑥 = −

𝑦

𝑐
𝜎𝑚

• where 𝜎𝑚 denotes the maximum absolute value of the stress. This result shows that, in the

elastic range, the normal stress varies linearly with the distance from the neutral surface.



• Note that neither the location of the neutral surface nor the maximum value of the stress have yet to

be determined. Both can be found using ׬ 𝜎𝑥𝑑𝐴 = 0 and ׬(−𝑦𝜎𝑥𝑑𝐴) = 𝑀. Substituting for 𝜎𝑥 from

𝜎𝑥 = −
𝑦

𝑐
𝜎𝑚 into 𝜎𝑥𝑑𝐴׬ = 0, write

න𝜎𝑥𝑑𝐴 = න
𝑦

𝑐
𝜎𝑚 𝑑𝐴 = −

𝜎𝑚
𝑐
න𝑦𝑑𝐴 = 0

• from which

න𝑦𝑑𝐴 = 0

• This equation shows that the first moment of the cross section about its neutral axis must be zero. Thus,

for a member subjected to pure bending and as long as the stresses remain in the elastic range, the

neutral axis passes through the centroid of the section.



• Specifying that the z axis coincides with the neutral axis of the cross section, substitute 𝜎𝑥 from

𝜎𝑥 = −
𝑦

𝑐
𝜎𝑚 into (𝑦𝜎𝑥𝑑𝐴−)׬ = 𝑀:

න(−𝑦) −
𝑦

𝑐
𝜎𝑚 𝑑𝐴 = 𝑀

𝜎𝑚
𝑐
න𝑦2𝑑𝐴 = 𝑀

• Recall that for pure bending the neutral axis passes through the centroid of the cross section

and 𝐼 is the moment of inertia or second moment of area of the cross section with respect to a

centroidal axis perpendicular to the plane of the couple 𝑀.

𝜎𝑚 =
𝑀𝑐

𝐼



• Substituting for 𝜎𝑚 from 𝜎𝑚 =
𝑀𝑐

𝐼
into 𝜎𝑥 = −

𝑦

𝑐
𝜎𝑚, we obtain the normal stress 𝜎𝑥 at any

distance 𝑦 from the neutral axis:

𝜎𝑥 = −
𝑀𝑦

𝐼

• Equation is called the elastic flexure formulas, and the normal stress 𝜎𝑥 caused by the bending

or “flexing” of the member is often referred to as the flexural stress. The stress is compressive

(𝜎𝑥 < 0) above the neutral axis (𝑦 > 0) when the bending moment M is positive and tensile

(𝜎𝑥 > 0) when 𝑀 is negative.



• Returning to 𝜎𝑚 =
𝑀𝑐

𝐼
, the ratio Τ𝐼 𝑐 depends only on the geometry of the cross section. This ratio

is defined as the elastic section modulus 𝑆, where

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 = 𝑆 =
𝐼

𝑐

• Substituting S for Τ𝐼 𝑐 into 𝜎𝑚 =
𝑀𝑐

𝐼
, this equation in alternative form is

𝜎𝑚 =
𝑀

𝑆

• Since the maximum stress 𝜎𝑚 is inversely proportional to the elastic section modulus 𝑆, beams

should be designed with as large a value of 𝑆 as is practical.



• The deformation of the member caused by the bending moment 𝑀 is measured by the curvature

of the neutral surface. The curvature is defined as the reciprocal of the radius of curvature r and

can be obtained by solving 𝜀𝑚 =
𝑐

𝜌
for Τ1 𝜌:

1

𝜌
=
𝜀𝑚
𝑐

• In the elastic range, 𝜀𝑚 = Τ𝜎𝑚
𝐸. Substituting 𝜀𝑚 and recalling 𝜎𝑚 =

𝑀𝑐

𝐼
, write

1

𝜌
=

1

𝐸𝑐

𝑀𝑐

𝐼
=
𝑀

𝐸𝐼



Concept Application 4.1

A steel bar of 0.8 x 2.5-in. rectangular cross section is subjected to two 
equal and opposite couples acting in the vertical plane of symmetry 
of the bar. Determine the value of the bending moment M that causes 
the bar to yield. Assume 𝜎𝑌 = 36 ksi.



Concept Application 4.1

Since the neutral axis must pass through the centroid C of the 
cross section, c =1.25 in. On the other hand, the centroidal moment of 
inertia of the rectangular cross section is

𝜎𝑚 =
𝑀𝑐

𝐼
→ 𝑀 = 𝜎𝑚.

𝐼

𝑐
= 36 𝑘𝑠𝑖

1.042 𝑖𝑛4

1.25 𝑖𝑛

𝑀 = 30 𝑘𝑖𝑝. 𝑖𝑛



Concept Application 4.2

An aluminum rod with a semicircular cross section of radius r =12 mm 
is bent into the shape of a circular arc of mean radius r=2.5 m. Knowing 
that the flat face of the rod is turned toward the center of curvature of 
the arc, determine the maximum tensile and compressive stress in the 
rod. Use E = 70 GPa.

Firstly, the centroid C of the cross-section where the neutral axis passes, must
be found

ത𝑦 =
4𝑟

3𝜋
=
4 12

3𝜋
= 5.093 𝑚𝑚



Concept Application 4.2

By using Hooke’s law and substituting maximum strain 𝜖𝑚 value into equation, 

the maximum normal stress 𝜎𝑚 can be determined. So, the maximum normal 

strain will be on the farthest point from the centroid (neutral axis). The distance

c is then

𝑐 = 𝑟 − ത𝑦 = 12 − 5.093 = 6.907 𝑚𝑚

Maximum normal strain, 𝜖𝑚 =
𝑐

𝜌
=

6.907∗10−3𝑚

2.5 𝑚
= 2.763 ∗ 10−3

Applying Hooke’s law, 𝜎𝑚 = 𝐸𝜖𝑚 = 70 ∗ 109 𝑃𝑎 2.763 ∗ 10−3 = 193.4 𝑀𝑃𝑎

Maximum compressive stress will be on the flat side of the rod, 

𝜎𝑐𝑜𝑚𝑝 = − ത𝑦
𝑐
𝜎𝑚 = −

5.093𝑚𝑚

6.097𝑚𝑚
193.4 𝑀𝑃𝑎 → 𝜎𝑐𝑜𝑚𝑝 = −142.6 𝑀𝑃𝑎



Deformations in a Transverse Cross Section

𝐴𝑛𝑡𝑖𝑐𝑙𝑎𝑠𝑡𝑖𝑐 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
1

𝜌′
=
𝜈

𝜌



Sample Problem 4.1

The rectangular tube shown is extruded from an aluminum alloy for which 𝜎𝑌 =
240 𝑀𝑃𝑎, 𝜎𝑈 = 290 𝑀𝑃𝑎, and E = 70 𝐺𝑃𝑎. Neglecting the effect of fillets, 
determine (a) the bending moment M for which the factor of safety will be 3.00 
and (b) the corresponding radius of curvature of the tube.

𝜎𝑎𝑙𝑙 =
𝜎𝑈
𝐹. 𝑆

=
290 𝑀𝑃𝑎

3
= 96.67 𝑀𝑃𝑎

Allowable stress. For a factor of safety of 3 and ultimate stress of 290 MPa

Since 𝜎𝑎𝑙𝑙 < 𝜎𝑌 material in elastic range

100 mm

80 mm
10 mm

𝐼 =
1

12
80 100 3 −

1

12
60 80 3 = 4.1067𝑥106 𝑚𝑚4

Moment of Inertia. 

80 mm

100 mm 80 mm

60 mm



Sample Problem 4.1

100 mm

80 mm
10 mm

Bending moment M. Where 𝑐 =
100𝑚𝑚

2
= 50 𝑚𝑚

𝜎𝑎𝑙𝑙 =
𝑀𝑐

𝐼
→ 𝑀 =

𝐼

𝑐
𝜎𝑎𝑙𝑙 =

4.1067𝑥10−6𝑚4

0.050 𝑚
96.67𝑥106𝑃𝑎

𝑀 = 7.94𝑥103 𝑁𝑚

Radius of Curvature. 

1

𝜌
=
𝑀

𝐸𝐼
=

7.94𝑥103𝑁𝑚

(0.050 𝑚)(4.1067𝑥10−6𝑚4)

1

𝜌
= 38.67𝑥109 𝑚−1 → 𝜌 = 25.86𝑥10−12 𝑚



Problem 4.1. Knowing that the couple shown acts in a vertical plane, 
determine the stress at (a) point A, (b) point B.



Problem 4.3. Using an allowable stress of 155 MPa, determine the largest 
bending moment M that can be applied to the wide-flange beam 
shown. Neglect the effect of fillets.



Problem 4.9. Two vertical forces are applied to a beam of the cross 
section shown. Determine the maximum tensile and compressive stresses in portion
BC of the beam.
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