
Pure Bending

Part II



Objectives

• Understand the bending behavior

• Define the deformations, strains, and normal stresses in beams subject
to pure bending

• Describe the behavior of composite beams made of more than one
material

• Analyze members subject to eccentric axial loading, involving both
axial stresses and bending stresses

• Review beams subject to unsymmetric bending, i.e., where bending
does not occur in a plane of symmetry



Members Made Of Composite Materials

• Consider a bar consisting of two portions of different materials bonded together as shown in figure.

• It cannot be assumed that the neutral axis passes through the centroid of the composite section,
and one of the goals of this analysis is to determine the location of this axis.



• Since the moduli of elasticity 𝐸1 and 𝐸2 of the two materials are different, the equations for the normal

stress in each material are

𝜎1 = 𝐸1𝜀𝑥 = 𝐸1
−𝑦

𝜌

𝜎2 = 𝐸2𝜀𝑥 = 𝐸2
−𝑦

𝜌

• A stress-distribution curve is obtained that consists of two segments with

straight lines as shown in figure.



• Following the stress equations above, the force 𝑑𝐹1 exerted on an element of area 𝑑𝐴 of the upper

portion of the cross section is

𝑑𝐹1 = 𝜎1𝑑𝐴 = −
𝐸1𝑦

𝜌
𝑑𝐴

• while the force 𝑑𝐹2 exerted on an element of the same area 𝑑𝐴 of the lower portion is

𝑑𝐹2 = 𝜎2𝑑𝐴 = −
𝐸2𝑦

𝜌
𝑑𝐴

• Denoting the ratio 𝐸2/𝐸1of the two moduli of elasticity by 𝑛,

𝑑𝐹2 = −
(𝑛𝐸1)𝑦

𝜌
𝑑𝐴 = −

𝐸1𝑦

𝜌
(𝑛𝑑𝐴)

dA

dA

𝑑𝐹1

𝑑𝐹2



• Comparing the equations

𝑑𝐹1 = 𝜎1𝑑𝐴 = −
𝐸1𝑦

𝜌
𝑑𝐴

𝑑𝐹2 = −
(𝑛𝐸1)𝑦

𝜌
𝑑𝐴 = −

𝐸1𝑦

𝜌
(𝑛𝑑𝐴)

• we note that the same force 𝑑𝐹2 would be exerted on an element of area 𝑛𝑑𝐴 of the first material. Thus,

the resistance to bending of the bar would remain the same if both portions were made of the first

material, provided that the width of each element of the lower portion were multiplied by the factor 𝑛.

• Note that this widening (if 𝑛 > 1) or narrowing (if 𝑛 < 1) must be in a direction parallel to the neutral

axis of the section, since it is essential that the distance y of each element from the neutral axis remain

the same. This new cross section is called the transformed section of the member.



• Since the transformed section represents the cross section of a member made of a homogeneous material

with a modulus of elasticity 𝐸1, the method described in previous course can be used to determine the

neutral axis of the section and the normal stress at various points. The neutral axis is drawn through the

centroid of the transformed section, and the stress 𝜎𝑥at any point of the corresponding homogeneous

member obtained from

𝜎𝑥 = −
𝑀𝑦

𝐼

• where 𝑦 is the distance from the neutral surface and 𝐼 is the moment of

inertia of the transformed section with respect to its centroidal axis.



• To obtain the stress 𝜎1 at a point located in the upper portion of the cross

section of the original composite bar, compute the stress 𝜎𝑥 at the

corresponding point of the transformed section. However, to obtain the

stress 𝜎2 at a point in the lower portion of the cross section, we must

multiply by n the stress 𝜎𝑥 computed at the corresponding point of the

transformed section. Indeed, the same elementary force 𝑑𝐹2 is applied to

an element of area 𝑛𝑑𝐴 of the transformed section and to an element of

area 𝑑𝐴 of the original section. Thus, the stress 𝜎2 at a point of the

original section must be 𝑛 times larger than the stress at the

corresponding point of the transformed section.



• The deformations of a composite member can also be determined by using the transformed

section. We recall that the transformed section represents the cross section of a member, made

of a homogeneous material of modulus 𝐸1 , which deforms in the same manner as the

composite member. Therefore, using radius of curvature equation, we write that the curvature

of the composite member is

1

𝜌
=

𝑀

𝐸1𝐼

• where 𝐼 is the moment of inertia of the transformed section with respect to its neutral axis.



Concept Application 4.3

A bar obtained by bonding together pieces of steel (𝐸𝑠 = 29𝑥106 𝑝𝑠𝑖) and brass (𝐸𝑠 =
15𝑥106 𝑝𝑠𝑖) has the cross section shown. Determine the maximum stress in the steel 
and in the brass when the bar is in pure bending with a bending moment M = 40 kip.in.

Transformed section

• The transformed section corresponding to an equivalent bar made entirely of brass is 
shown in Fig. Since;

𝑛 =
𝐸𝑠
𝐸𝑏

=
29𝑥106

15𝑥106
= 1.933

the width of the central portion of brass, which replaces the original steel portion, is 
obtained by multiplying the original width by 1.933:

0.75 1.933 = 1.45 𝑖𝑛.

𝐼 =
1

12
𝑏ℎ3 =

1

12
2.25 3 3 = 5.063 𝑖𝑛4

the moment of inertia of the transformed section about neutral axis:



Concept Application 4.3

Transformed section

• Maximum distance from the neutral axis is c=1.5 in. Maximum normal stress in the
transformed section is

𝜎𝑚 =
𝑀𝑐

𝐼
=
(40 𝑘𝑖𝑝. 𝑖𝑛)(1.5 𝑖𝑛. )

5.063 𝑖𝑛4
= 11.85 𝑘𝑠𝑖

This value also represents the maximum stress in the brass portion of the original 
composite bar. The maximum stress in the steel portion, however, will be larger than for 
the transformed section, since the area of the central portion must be reduced by the 
factor n = 1.933. Thus,

(𝜎𝑏𝑟𝑎𝑠𝑠)𝑚𝑎𝑥 = 11.85 𝑘𝑠𝑖

(𝜎𝑠𝑡𝑒𝑒𝑙)𝑚𝑎𝑥 = 1.933 (11.85 𝑘𝑠𝑖) = 22.9 𝑘𝑠𝑖



Eccentric Axial Loading in a Plane Of Symmetry
• We saw in Sec. 1.2A that the distribution of stresses in the cross section of a member under axial loading

can be assumed uniform only if the line of action of the loads P and P’ passes through the centroid of the
cross section. Such a loading is said to be centric.

• Let us now analyze the distribution of stresses when the line of action of the loads does not pass through
the centroid of the cross section, i.e., when the loading is eccentric.



• In this section, our analysis will be limited to members that possess a plane of symmetry, and it will be

assumed that the loads are applied in the plane of symmetry of the member.

• The internal forces acting on a given cross section may then be represented by a force 𝑭 applied at the

centroid C of the section and a couple 𝑴 acting in the plane of symmetry of the member.



• We now observe that the internal forces in the section would have been represented by the same force

and couple if the straight portion DE of member AB had been detached from AB and subjected

simultaneously to the centric loads 𝑷 and 𝑷′ and to the bending couples 𝑴 and 𝑴′.



• Thus, the stress distribution due to the original eccentric loading can be obtained by superposing the

uniform stress distribution corresponding to the centric loads 𝑃 and 𝑃′ and the linear distribution

corresponding to the bending couples 𝑀 and 𝑀′. Write

𝜎𝑥 = (𝜎𝑥)𝑐𝑒𝑛𝑡𝑟𝑖𝑐+(𝜎𝑥)𝑏𝑒𝑛𝑑𝑖𝑛𝑔

𝜎𝑥 =
𝑃

𝐴
−
𝑀𝑦

𝐼



Concept Application 4.7

An open-link chain is obtained by bending low-carbon steel rods of 0.5-in. diameter into 
the shape shown (Fig. 4.43a). Knowing that the chain carries a load of 160 lb, determine 
(a) the largest tensile and compressive stresses in the straight portion of a link, (b) the 
distance between the centroidal and the neutral axis of a cross section.



General Case Of Eccentric Axial Loading Analysis

𝜎𝑥 =
𝑃

𝐴
−
𝑀𝑧𝑦

𝐼𝑧
−
𝑀𝑦𝑧

𝐼𝑦
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