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Problem Solving Procedure

The numerical method used to solve an equation or problem reaches a numerical solution by

Error

processing certain input data. Numerical methods, unlike analytical solutions, operate using
numbers and contain a certain margin of error. In addition, the input data may be slightly
inaccurate. If the input data is found as a result of experiments, these values will contain a

margin of error depending on the sensitivity of the measurements made.



Errors

The fact that the input information and the method used contain errors indicates that the
results will contain a certain amount of error. In other words, the results found by numerical
methods are approximate values, not exact values.

Therefore, error analysis is an important issue in numerical solution. Rather than the results
containing errors, it is important that these errors are within acceptable limits, that is, the errors
are smaller than the given tolerance value.

Error is essentially the difference between the actual value and the calculated approximate

value.



SIGNIFICANT FIGURES

« The concept of a significant figure, or digit, has been developed to formally designate the
reliability of a numerical value. The significant digits of a number are those that can be
used with confidence. They correspond to the number of certain digits plus one estimated

digit.

« Consider the problem of measuring the distance between two points using a ruler that has
a scale with T mm between the finest divisions:

e |If we record our measurements in centimeters and if
we estimate fractions of a millimeter, then a

@ -------o-ooo-ooooooooooo- ® distance recorded as 3.76 cm gives two precise
Iy digits G.e, the 3 and the 7) and one estimated digit
(i.e., the 6).
0 cm 1 ; 3 4 5 * Here, the measurement has three significant digits.

« |If we recorded the number as 3.762, we would still
have only three significant digits since the 2 is not
precise.



« The concept of significant figures has two important implications for our study of numerical
methods:

1. As introduced in the falling parachutist problem, numerical methods yield approximate results.
We must, therefore, develop criteria to specify how confident we are in our approximate result.
One way to do this is in terms of significant figures. For example, we might decide that our

approximation is acceptable if it is correct to four significant figures.

2. Although quantities such as T, e, or v/7 represent specific quantities, they cannot be expressed
exactly by a limited number of digits. For example,
m = 3.141592653589793238462643...
ad infinitum. Because computers retain only a finite number of significant figures, such numbers can
never be represented exactly. The omission of the remaining significant figures is called round-off

error.



 When performing computations, the following is a general rule on setting the
number of significant digits in a computed value: Any mathematical operation using
an imprecise digit is imprecise.

« Consider the following multiplication of two numbers (4.26 and 8.39), each having
three significant digits, with the last digit of each being imprecise:

426 Starting number
8.39 Starting number
0.3834 0.09 times 4.26
1.278 0.3 times 4.26
34.08 8 times 4.26
357414 Total (product result)

The digits that depend on imprecise digits are underlined- In the final answer, only the first two
digits (35) are not based on imprecise digits. Since one and only one imprecise digit can be
considered as significant, the result is recorded as 35.7.



Accuracy and Precision Increasing accuracy

Accuracy: How closely a computed or measured
value agrees with the true value.
Precision: How closely computed or measured

values agree with each other.

Increasing precision

Figure. An example from marksmanship illustrating the
concepts of accuracy and precision. (a) Inaccurate

and imprecise; (b) accurate and imprecise; (c) inaccurate and
precise; (d) accurate and precise.




Error Definitions

Numerical errors arise from the use of approximations to represent exact mathematical operations
and quantities. These include truncation errors, which result when approximations are used to
represent exact mathematical procedures, and round-off errors, which result when numbers having

limited significant figures are used to represent exact numbers.
TRUE ERROR:

True value = approximation + error =m) E.= True value - approximation

Relative True Error (fractional) ) o - D
True Value
Relative True Error (percentage) ™= ¢ = _—t__100% (Preferred)

True Value



Error Definitions

APPROXIMATE ERROR:

Approx. Error: mm) [ ,= Current Approx.- Previous Approx.
Relative Approx. Error (fractional) —> Eq = Currenzppmx
Relati ) . - =L 100%

elative Approx. Error (percentage) €4 = Current AppToR 6 (Preferred)

Tolerance: Many numerical methods work in an iterative fashion. There should be a stopping

criteria for these methods. We stop when the error level drops below a certain tolerance value (s, )
that we select (| ¢, | < &)

If this relationship holds, our result is assumed to be within the prespecified acceptable level ¢ .



Error Definitions

EXAMPLE 1. Suppose that you have the task of measuring the lengths of a bridge and a rivet and
come up with 9999 and 9 cm, respectively. If the true values are 10,000 and 10 cm, respectively,
compute (a) the true error and (b) the true percent relative error for each case.

Solution. (a) The error for measuring the bridge is E, =10000—-9999 =1cm

and for therivetis: £, =10—-9=1cm

E
‘ 100% = 100% = 0.01%

True Value 10000

(b) The percent relative error for the bridge is ¢ =

1
and for therivetis: & = 10 100% = 10%



Error Definitions

Scarborough criteria: If the tolerance is selected to be £ = 0. 5x10%7"% than the approximation
is guaranteed to be correct to at least n significant figures (digits).

EXAMPLE 2. Let’s calculate the value of e%> by using Maclaurin series expansion.

Solution. Scarborough criteria can be employed to determine the error criterion that ensures a result
is correct to at least three significant figures:

s = 0.5x10273% = 0.05%

Thus, we will add terms to the series until g, falls below this level.



Error Definitions

The first estimate el =1

The second estimate e*=14+x - e%°=1+4+05=1.5

: True Error 1.648721-1.5
True percent relative error: & = 100% = 100% = 9.02%
True Value 1.648721

. A E 1.5—1
Approx. percent relative error: g, = Cuif:z:Ap;rroorx 1009% = 155 100% = 33.3%

Since g, is not less than the required value of €, ,we would continue the computation by
adding another term, x2/2!, and repeating the error calculations.



Error Definitions

Terms Result et (%) eq (%)
] ] 39.3
2 1.5 .02 33.3
3 1.625 1.44 el
4 1.645833333 0.1/5 1.27
5 1.64843/500 0.01/2 0.158
o) 1.6486Q/91/ 0.001472 0.0158




Error Definitions

Round-Off Errors

* Computers can not use infinitely many digits to store numbers.
* Conversion from base 10 to base 2 may create problems.

(0.1),, = (0.00011 00011 00011 00011 ......),

* Some numbers like 1t or 1/3 can not be represented exactly.

e Floating point numbers can be stored as single (7-8 digits) or double precision (15-16).

Double precision storage reduces round-off errors.

e Round-off errors can not be totally eliminated but clever algorithms may help to minimize them.
e Round-off errors have accumulative behavior.

Truncation Errors

* Due to the use of an approximation in place of an exact mathematical procedure.
* For example, calculating sine of a number using finite number of terms from the infinite
series will result in truncation error.



Error Definitions

x3 x> x7
Example 3. Calculate sin(x) = x — 3] + o + T + .- forx ==
Stop when ¢, = 0.001%
Number of terms sin(x) le:| % leq| Y%

1 1.570796327 57.1 —

2 0.924832229 7.52 69.84

3 1.004524856 0.45 7.93

4 0.999843101 1.57E-1 0.47

5 1.000003543 3.54 E-3 0.16 E-1

6 0.999999943 5.63 E-5 3.60E-4

Important: Round-off and truncation errors generally appear together. As we add more terms,
truncation error drops. But at some point, round-off error starts to dominate due to its
accumulative behavior and total error will start to increase.



Taylor Series of Expansion (!!)

Taylor series is the basics of this course. It is simply used to evaluate a function at one point, using
the value of the function and its derivatives at another point.

f(x)
Known: f(x;), f'(x;), f"(x;), etc.
Unknown: f(x,,)

0t order approximation: f(x;,,) =~ f(x;)

f(x)
Known: f(x;), f'(x;), f"(x;), etc.

Unknown: f(x;,,)
1t order approximation: f'(x,) = df ~ Af _ f(Xi4) —1(X;)
dx AX h

f(xii1) = FOx) + h F(x;)

* h=x,,—xis called the step size.
* In general approximations for f(x,,, ) gets better as the order of approximation increases and as as h
decreases.



Taylor Series of Expansion (!!)

Generalization of Taylor Series

h? h3 h™
f(xl+1) — f(xl) T f’ (xl)h T f”(xl) 1 + f’”(xl) = + Tt fn(xl) T + R

This is the n?" order Taylor series approximation of f(x;,,) around x;.

R,, is the remainder (truncation error).

frrR ) -
(n+1)!

n" order Taylor series expansion will be exact if f(x) is an nth order polynomial. R,, will have

Ry =

(n+1)" derivative which is zero.



Taylor Series of Expansion (!!)

The square-root function, using the Taylor series expansion, can be expressed as

f(x)=x

To evaluate the Taylor series, the derivatives of the function are developed

1 1 0.5
f! )(x)=§~’f f{z)(x)=—ix1'5 f(3}(x):§x



For a base point x, =1 and h = 0.001, the four terms of the Taylor series produce the
following estimate for the square root of 1.001:

012 0. 0013

f(1.001) = f(1) + f'(1).0.001 +£"'(1) 0.0 +£7"'(1)

2!

| i
£(1.001)=+/1.00 1 =~+/1 +0.5(0.001)( ‘“J—E(o.om)?u)‘l“

f(1.001) = 1 + 0.5 X 1073 — 0.125 x 107° + 0.625 x 10~1° = 1.0004999



Taylor Series (!!1)

Example: Use zero- through fourth-order Taylor series expansions to approximate the function
f(x) = —0.1x* — 0.15x3 — 0.5x% — 0.25x + 1.2

from x; = 0 with h=1. That is, predict the function’s value at x;,; = 1.

flx) 4

flx,)

Zero order

Because we are dealing with a known ® flx;, 1) = flx)
function, we can compute values for f(x) s
between 0 and 1. Thus, the true value that we

are trying to predict is 0.2.

flx,, q) = flx) + f(x;)h

06 flx; L ) = flx) + fx)h + fl;‘}") h?

f(“.i+ ‘I)

h



flx) 4

Taylor Series (!!) S T S

1.0 —

% 1) = flx) + flx)h

f(x) = —0.1x* — 0.15x° — 0.5x% — 0.25x + 1.2

_ . . 05 - %o 1) = flx) + flh + L0 2
Taylor series approximation with n=0, zero-order 2!
appr. %1 1)
f(xl+1) E 1.2 0 -
Truncationerror: E; =02—-12=-1.0 ‘ ;

For n=1, the first derivative must be determined and evaluated at x = O:

£'(0) = —0.4(0)3 — 0.45(0)% — 1(0) — 0.25 = —0.25
Thus, the first-order appr. f(x;11) = 1.2 —0.25h > f(1) = 0.95

Truncation error:  E; = 0.2 —0.95 = —-0.75



. f) 4 y
Taylor Series (!!) S Y R .

1.0 —

% 1) = flx) + lx)h

f(x) = —0.1x* — 0.15x° — 0.5x% — 0.25x + 1.2

— L %o o) = )+ e L) o
* For n=2, the second-order derivative: i+ fpilEd S
i
1 _ 2 . —
f(0) = —1.2(0) 09(0)—1=-1 ol :
Thus, the second-order appr. h

f(x;,1) = 1.2 — 0.25h — 0.5h% - f(1) = 0.45

Truncation error: E, = 0.2 —-0.45 = -0.25

e Additional terms would improve the approximation even more. In fact, the inclusion of the third
and the fourth derivatives results in the same value.



Taylor Series (!!1)

* In general, we can usually assume that the truncation error is decreased by the addition of terms
to the Taylor series. In many cases, if h is sufficiently small, the first- and other lower-order terms
usually account for a disproportionately high percent of the error. Thus, only a few terms are
required to obtain an adequate estimate.

Example: Use Taylor series expansions with n = 0 to 6 to approximate f(x) = cosx at x;,; = m/3 on

the basis of the value of f(x) and its derivatives at x; = /4.

T T T

Be careful, this means that h = 3 1712

T
Zero-order appr. f(m/3) = cos (Z) = 0.707106781

~ 0.5-10.707106781
B 0.5

Percent relative error: — —41.4%

T T\ [ T
First-order appr. f(/3) = cos (Z) — sin (Z) (E) =0.521986659 & = —4.40%



Taylor Series (!!)

Second-order appr.  f(/3) = (n) ' (n) ( n) (n) - (n )2 =0.497754491
ppr. m/3) = cos sin 17 COS 2) 7-\z) =0

4 4
g, = 0.449%
Order n F1")( x) f(r/3) £t

9 Cos X 0.707106/781 —41.4
| —sin X 0.521986659 —4.4
2 —CO5 X 0.497 754491 0.44Q _
3 sin x 0.4998B69147 267 x 10‘{
A Cos X 0.500007551 —1.51 x 10—
5 —sin X 0.500000304 —6.08 x 107
é —COS X 0.499090088 2.44 x 10-°

* Notice that the derivatives never go to zero as was the case with the polynomial. Therefore, each
additional term results in some improvement in the estimate.
e Also notice how most of the improvement comes with the initial terms.



NEXT WEEK
ROOTS OF EQUATIONS
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