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Problem Solving Procedure

The numerical method used to solve an equation or problem reaches a numerical solution by 

processing certain input data. Numerical methods, unlike analytical solutions, operate using 

numbers and contain a certain margin of error. In addition, the input data may be slightly 

inaccurate. If the input data is found as a result of experiments, these values will contain a 

margin of error depending on the sensitivity of the measurements made.
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Errors

• The fact that the input information and the method used contain errors indicates that the 

results will contain a certain amount of error. In other words, the results found by numerical 

methods are approximate values, not exact values. 

• Therefore, error analysis is an important issue in numerical solution. Rather than the results 

containing errors, it is important that these errors are within acceptable limits, that is, the errors 

are smaller than the given tolerance value. 

• Error is essentially the difference between the actual value and the calculated approximate 

value.



• The concept of a significant figure, or digit, has been developed to formally designate the 
reliability of a numerical value. The significant digits of a number are those that can be
used with confidence. They correspond to the number of certain digits plus one estimated

digit.
• Consider the problem of measuring the distance between two points using a ruler that has 

a scale with 1 mm between the finest divisions· 

SIGNIFICANT FIGURES

• If we record our measurements in centimeters and if 
we estimate fractions of a millimeter, then a
distance recorded as 3.76 cm gives two precise 
digits (i.e., the 3 and the 7) and one estimated digit 
(i.e., the 6).

• Here, the measurement has three significant digits.
• If we recorded the number as 3.762, we would still 

have only three significant digits since the 2 is not 
precise.



• The concept of significant figures has two important implications for our study of numerical 

methods:

1. As introduced in the falling parachutist problem, numerical methods yield approximate results. 

We must, therefore, develop criteria to specify how confident we are in our approximate result. 

One way to do this is in terms of significant figures. For example, we might decide that our 

approximation is acceptable if it is correct to four significant figures.

2. Although quantities such as π, e, or 7 represent specific quantities, they cannot be expressed 

exactly by a limited number of digits. For example,

𝜋 = 3.141592653589793238462643. . .

ad infinitum. Because computers retain only a finite number of significant figures, such numbers can 

never be represented exactly. The omission of the remaining significant figures is called round-off 

error.



• When performing computations, the following is a general rule on setting the 
number of significant digits in a computed value: Any mathematical operation using 
an imprecise digit is imprecise.

• Consider the following multiplication of two numbers (4.26 and 8.39), each having 
three significant digits, with the last digit of each being imprecise:

The digits that depend on imprecise digits are underlined· In the final answer, only the first two 
digits (35) are not based on imprecise digits. Since one and only one imprecise digit can be 
considered as significant, the result is recorded as 35.7.



Accuracy and Precision

Accuracy: How closely a computed or measured 

value agrees with the true value.

Precision: How closely computed or measured 

values agree with each other.

Figure. An example from marksmanship illustrating the 
concepts of accuracy and precision. (a) Inaccurate
and imprecise; (b) accurate and imprecise; (c) inaccurate and 
precise; (d) accurate and precise.



Error Definitions

Numerical errors arise from the use of approximations to represent exact mathematical operations 

and quantities. These include truncation errors, which result when approximations are used to 

represent exact mathematical procedures, and round-off errors, which result when numbers having 

limited significant figures are used to represent exact numbers. 

TRUE ERROR:

True value = approximation + error 𝐸𝑡= True value - approximation 

Relative True Error (fractional) 𝜀𝑡 = 
𝐸𝑡

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒

Relative True Error (percentage) 𝜀𝑡 = 
𝐸𝑡

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒
100% (Preferred)



Error Definitions

APPROXIMATE ERROR:

Approx. Error: 𝐸𝑎= Current Approx.- Previous Approx. 

Relative Approx. Error (fractional) 𝜀𝑎 = 
𝐸𝑎

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑝𝑝𝑟𝑜𝑥.

Relative Approx. Error (percentage) 𝜀𝑎 = 
𝐸𝑎

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑝𝑝𝑟𝑜𝑥.
100% (Preferred)

Tolerance: Many numerical methods work in an iterative fashion. There should be a stopping
criteria for these methods. We stop when the error level drops below a certain tolerance value (𝜀𝑠 ) 
that we select (| 𝜀𝑎 | < 𝜀𝑠 )

If this relationship holds, our result is assumed to be within the prespecified acceptable level 𝜀𝑠 .



Error Definitions
EXAMPLE 1. Suppose that you have the task of measuring the lengths of a bridge and a rivet and 
come up with 9999 and 9 cm, respectively. If the true values are 10,000 and 10 cm, respectively, 
compute (a) the true error and (b) the true percent relative error for each case.

Solution.  (a) The error for measuring the bridge is 𝐸𝑡 = 10000 − 9999 = 1 𝑐𝑚

and for the rivet is: 𝐸𝑡 = 10 − 9 = 1 𝑐𝑚

(b) The percent relative error for the bridge is 𝜀𝑡 =
𝐸𝑡

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒
100% =

1

10000
100% = 0.01%

and for the rivet is: 𝜀𝑡 =
1

10
100% = 10%



Error Definitions

Scarborough criteria: If the tolerance is selected to be 𝜺𝒔 = 𝟎. 𝟓𝒙𝟏𝟎𝟐−𝒏% than the approximation 
is guaranteed to be correct to at least n significant figures (digits).

EXAMPLE 2.  Let’s calculate the value of 𝑒0.5 by using Maclaurin series expansion.

𝑒𝑥 = 1 +
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+ ⋯

𝑥𝑛

𝑛!

Solution. Scarborough criteria can be employed to determine the error criterion that ensures a result 
is correct to at least three significant figures:

𝜀𝑠 = 0.5𝑥102−3% = 0.05%

Thus, we will add terms to the series until εa falls below this level.



Error Definitions
𝑒0.5 = 1The first estimate

True percent relative error: 𝜀𝑡 = 
𝑇𝑟𝑢𝑒 𝐸𝑟𝑟𝑜𝑟

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒
100% =

1.648721−1.5

1.648721
100% = 9.02%

Approx. percent relative error: 𝜀𝑎 = 
𝐴𝑝𝑝𝑟𝑜𝑥. 𝐸𝑟𝑟𝑜𝑟

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑝𝑝𝑟𝑜𝑥.
100% =

1.5−1

1.5
100% = 33.3%

𝑒𝑥 = 1 + 𝑥 →The second estimate 𝑒0.5 = 1 + 0.5 = 1.5

Since εa is not less than the required value of εs ,we would continue the computation by
adding another term, x2/2!, and repeating the error calculations. 



Error Definitions



Error Definitions
Round-Off Errors

• Computers can not use infinitely many digits to store numbers.
• Conversion from base 10 to base 2 may create problems.

• Some numbers like π or 1/3 can not be represented exactly.
• Floating point numbers can be stored as single (7-8 digits) or double precision (15-16). 
Double precision storage reduces round-off errors.
• Round-off errors can not be totally eliminated but clever algorithms may help to minimize them.
• Round-off errors have accumulative behavior.

Truncation Errors

• Due to the use of an approximation in place of an exact mathematical procedure.
• For example, calculating sine of a number using finite number of terms from the infinite 
series will result in truncation error.



Error Definitions
Example 3. Calculate sin 𝑥 = 𝑥 −

𝑥3

3!
+
𝑥5

5!
+
𝑥7

7!
+⋯ for 𝑥 =

𝜋

2

Stop when 𝜀𝑎 = 0.001%

Number of terms sin 𝑥 𝜀𝑡 % 𝜀𝑎 %

1 1.570796327 57.1 ----

2 0.924832229 7.52 69.84

3 1.004524856 0.45 7.93

4 0.999843101 1.57 E-1 0.47

5 1.000003543 3.54 E-3 0.16 E-1

6 0.999999943 5.63 E-5 3.60 E-4

Important: Round-off and truncation errors generally appear together. As we add more terms,
truncation error drops. But at some point, round-off error starts to dominate due to its
accumulative behavior and total error will start to increase.



Taylor Series of Expansion (!!)
Taylor series is the basics of this course. It is simply used to evaluate a function at one point, using 
the value of the function and its derivatives at another point.

• h=xi+1 – xi is called the step size.
• In general approximations for f(xi+1 ) gets better as the order of approximation increases and as as h 

decreases.



Taylor Series of Expansion (!!)
Generalization of Taylor Series

f 𝑥𝑖+1 = f 𝑥𝑖 + f ′ 𝑥𝑖 ℎ + f ′′ 𝑥𝑖
ℎ2

2!
+ f ′′′ 𝑥𝑖

ℎ3

3!
+ ⋯+ 𝑓𝑛 𝑥𝑖

ℎ𝑛

𝑛!
+ 𝑅𝑛

• This is the nth order Taylor series approximation of f 𝑥𝑖+1 around 𝑥𝑖.

• 𝑅𝑛 is the remainder (truncation error).

• nth order Taylor series expansion will be exact if f(x) is an nth order polynomial. 𝑅𝑛 will have 

• (n+1)th derivative which is zero.

𝑅𝑛 =
𝑓 𝑛+1 (𝜉)

𝑛 + 1 !
ℎ𝑛+1



Taylor Series of Expansion (!!)

The square-root function, using the Taylor series expansion, can be expressed as

To evaluate the Taylor series, the derivatives of the function are developed



For a base point x0 = 1 and h = 0.001, the four terms of the Taylor series produce the 
following estimate for the square root of 1.001:

f 1.001 = f 1 + f ′ 1 . 0.001 + f ′′ 1
0.0012

2!
+ f ′′′ 1

0.0013

3!



Taylor Series (!!)

Example: Use zero- through fourth-order Taylor series expansions to approximate the function

from 𝑥𝑖 = 0 with h=1. That is, predict the function’s value at 𝑥𝑖+1 = 1. 

• Because we are dealing with a known
function, we can compute values for f(x) 
between 0 and 1. Thus, the true value that we 
are trying to predict is 0.2.



Taylor Series (!!)

f 𝑥𝑖+1 ≅ 1.2

• Taylor series approximation with n=0, zero-order
appr.

𝐸𝑡 = 0.2 − 1.2 = −1.0Truncation error:

• For n=1, the first derivative must be determined and evaluated at x = 0:

Thus, the first-order appr.

𝑓′ 0 = −0.4 0 3 − 0.45 0 2 − 1 0 − 0.25 = −0.25

f 𝑥𝑖+1 ≅ 1.2 − 0.25ℎ → f 1 ≅ 0.95

𝐸𝑡 = 0.2 − 0.95 = −0.75Truncation error:



Taylor Series (!!)

• For n=2, the second-order derivative:

Thus, the second-order appr.

𝑓′′ 0 = −1.2 0 2 − 0.9(0) − 1 = −1

f 𝑥𝑖+1 ≅ 1.2 − 0.25ℎ − 0.5ℎ2 → f 1 ≅ 0.45

𝐸𝑡 = 0.2 − 0.45 = −0.25Truncation error:

• Additional terms would improve the approximation even more. In fact, the inclusion of the third 
and the fourth derivatives results in the same value. 



Taylor Series (!!)

• In general, we can usually assume that the truncation error is decreased by the addition of terms 
to the Taylor series. In many cases, if h is sufficiently small, the first- and other lower-order terms 
usually account for a disproportionately high percent of the error. Thus, only a few terms are 
required to obtain an adequate estimate. 

𝜀𝑡 =
0.5 − 0.707106781

0.5
= −41.4%Percent relative error:

Example: Use Taylor series expansions with n = 0 to 6 to approximate 𝑓 𝑥 = cos 𝑥 at 𝑥𝑖+1 = 𝜋/3 on 
the basis of the value of f(x) and its derivatives at 𝑥𝑖 = 𝜋/4. 

Be careful, this means that 𝒉 =
𝝅

𝟑
−

𝝅

𝟒
=

𝝅

𝟏𝟐

f 𝜋/3 ≅ cos
𝜋

4
= 0.707106781Zero-order appr.

First-order appr. f 𝜋/3 ≅ cos
𝜋

4
− sin

𝜋

4

𝜋

12
=0.521986659 𝜀𝑡 = −4.40%



Taylor Series (!!)

Second-order appr. f 𝜋/3 ≅ cos
𝜋

4
− sin

𝜋

4

𝜋

12
− cos

𝜋

4
.
1

2!
.
𝜋

12

2

=0.497754491

𝜀𝑡 = 0.449%

• Notice that the derivatives never go to zero as was the case with the polynomial. Therefore, each 
additional term results in some improvement in the estimate.

• Also notice how most of the improvement comes with the initial terms.



NEXT WEEK
ROOTS OF EQUATIONS


	Slayt 1: ME 209 Numerical Methods
	Slayt 2: Problem Solving Procedure
	Slayt 3: Errors
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8: Error Definitions
	Slayt 9: Error Definitions
	Slayt 10: Error Definitions
	Slayt 11: Error Definitions
	Slayt 12: Error Definitions
	Slayt 13: Error Definitions
	Slayt 14: Error Definitions
	Slayt 15: Error Definitions
	Slayt 16: Taylor Series of Expansion (!!)
	Slayt 17: Taylor Series of Expansion (!!)
	Slayt 18
	Slayt 19
	Slayt 20: Taylor Series (!!)
	Slayt 21: Taylor Series (!!)
	Slayt 22: Taylor Series (!!)
	Slayt 23: Taylor Series (!!)
	Slayt 24: Taylor Series (!!)
	Slayt 25: NEXT WEEK ROOTS OF EQUATIONS

