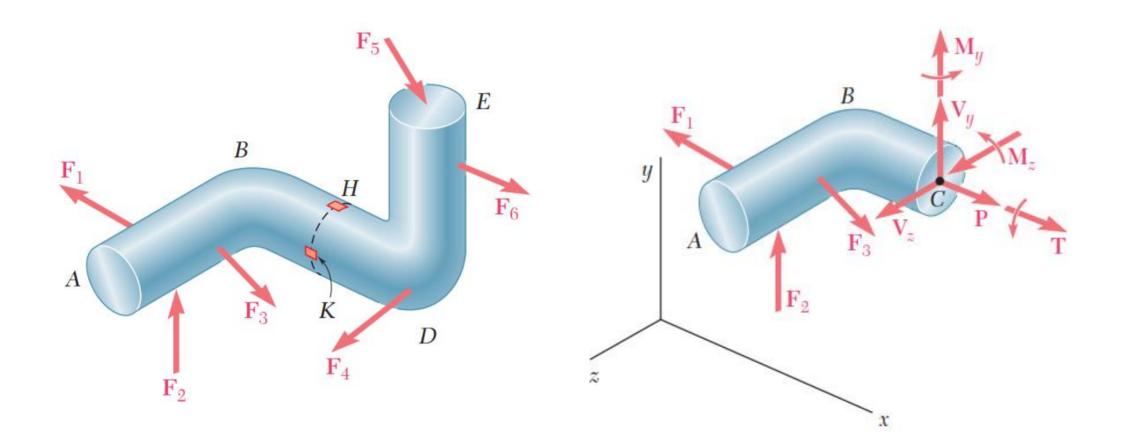
Principal Stresses under a Given Loading



## **Objectives**

✓ Determine stresses developed in a member's cross section when axial load, torsion, bending and shear occur simultaneously.

### **Stresses Under Combined Loads**



### **Stresses Under Combined Loads**

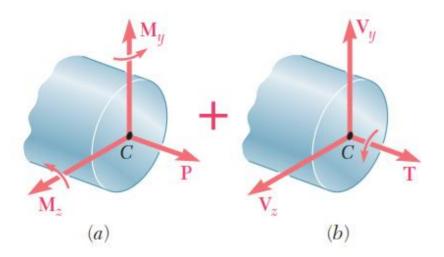


Fig. 8.17 Internal forces and couple vectors separated into (a) those causing normal stresses and (b) those causing shearing stresses.

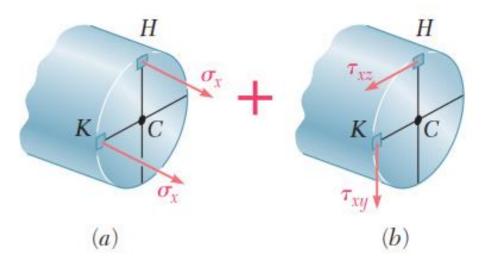


Fig. 8.18 Normal and shearing stresses at points H and K.

## **Stresses Under Combined Loads**

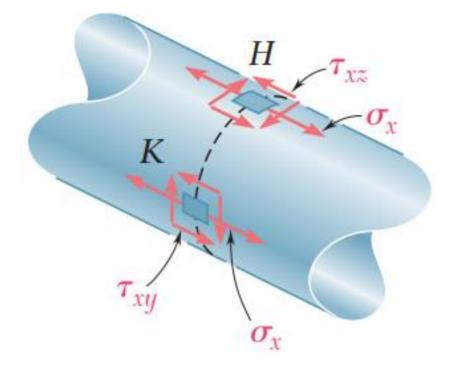
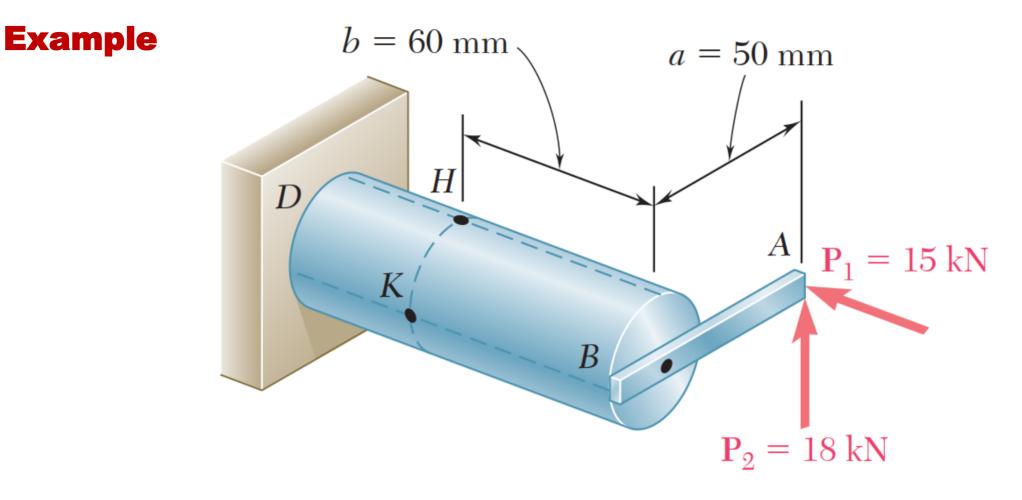
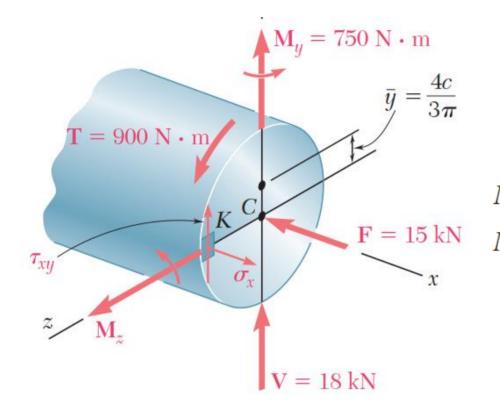


Fig. 8.19 Elements at points H and K showing combined stresses.



Determine (a) the normal and shearing stresses at point K of the transverse section of member BD located at a distance b = 60 mm from end B, (b) the principal axes and principal stresses at K, and (c) the maximum shearing stress at K.



$$F = P_1 = 15 \text{ kN}$$
$$V = P_2 = 18 \text{ kN}$$
$$T = P_2 a = (18 \text{ kN})(50 \text{ mm}) = 900 \text{ N} \cdot \text{m}$$
$$M_y = P_1 a = (15 \text{ kN})(50 \text{ mm}) = 750 \text{ N} \cdot \text{m}$$
$$M_z = P_2 b = (18 \text{ kN})(60 \text{ mm}) = 1080 \text{ N} \cdot \text{m}$$

### **Geometric Properties of the Section**

$$A = \pi c^{2} = \pi (0.020 \text{ m})^{2} = 1.257 \times 10^{-3} \text{ m}^{2}$$

$$I_{y} = I_{z} = \frac{1}{4} \pi c^{4} = \frac{1}{4} \pi (0.020 \text{ m})^{4} = 125.7 \times 10^{-9} \text{ m}^{4}$$

$$J_{C} = \frac{1}{2} \pi c^{4} = \frac{1}{2} \pi (0.020 \text{ m})^{4} = 251.3 \times 10^{-9} \text{ m}^{4}$$

$$Q = A' \bar{y} = \left(\frac{1}{2} \pi c^{2}\right) \left(\frac{4c}{3\pi}\right) = \frac{2}{3} c^{3} = \frac{2}{3} (0.020 \text{ m})^{3}$$

$$= 5.33 \times 10^{-6} \text{ m}^{3}$$

t = 2c = 2(0.020 m) = 0.040 m

$$\sigma_x = -\frac{F}{A} + \frac{M_y c}{I_y} = -11.9 \text{ MPa} + \frac{(750 \text{ N} \cdot \text{m})(0.020 \text{ m})}{125.7 \times 10^{-9} \text{ m}^4}$$

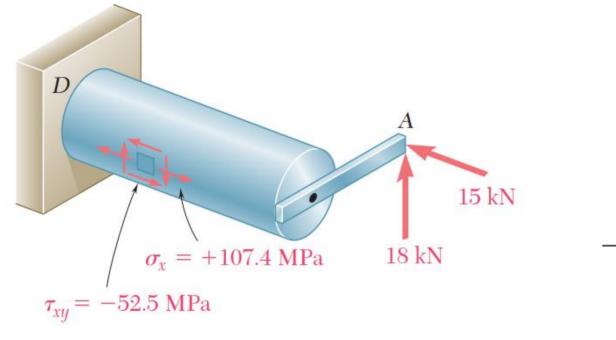
**Normal Stresses.** 

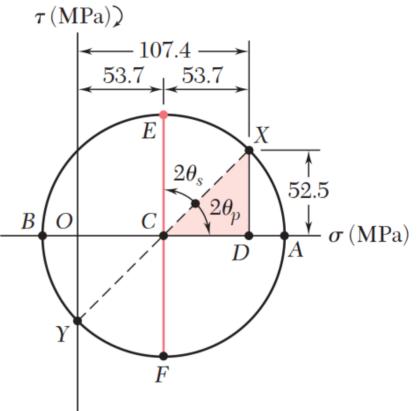
= -11.9 MPa + 119.3 MPa

 $\sigma_x = +107.4 \text{ MPa}$ 

**Shearing Stresses.** 

$$(\tau_{xy})_V = +\frac{VQ}{I_z t} = +\frac{(18 \times 10^3 \text{ N})(5.33 \times 10^{-6} \text{ m}^3)}{(125.7 \times 10^{-9} \text{ m}^4)(0.040 \text{ m})}$$
$$= +19.1 \text{ MPa}$$
$$(\tau_{xy})_{\text{twist}} = -\frac{Tc}{L} = -\frac{(900 \text{ N} \cdot \text{m})(0.020 \text{ m})}{251.2 \times 10^{-9} \text{ m}^4} = -71.6 \text{ MI}$$





#### $\tau$ (MPa)) 107.4 -53.753.7E |X| $2\theta_s$ 52.5 $2\theta_p$ В 0 $\sigma$ (MPa) Α D γ F

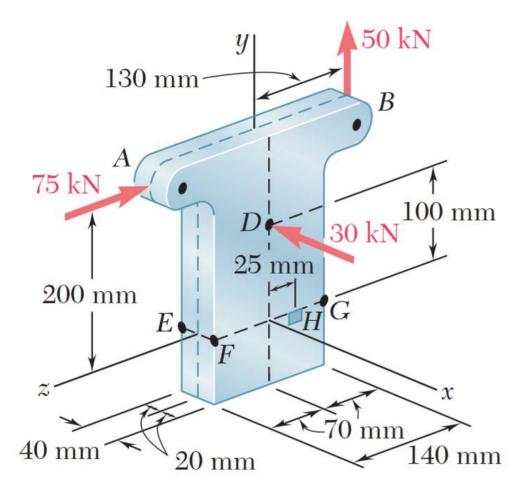
### **Principal Planes and Principal Stresses at Point** *K***.**

$$\tan 2\theta_p = \frac{DX}{CD} = \frac{52.5}{53.7} = 0.97765 \qquad 2\theta_p = 44.4^{\circ} \downarrow$$
$$\theta_p = 22.2^{\circ} \downarrow$$
$$R = \sqrt{(53.7)^2 + (52.5)^2} = 75.1 \text{ MPa}$$
$$\sigma_{\text{max}} = OC + R = 53.7 + 75.1 = 128.8 \text{ MPa}$$
$$\sigma_{\text{min}} = OC - R = 53.7 - 75.1 = -21.4 \text{ MPa}$$

Maximum Shearing Stress at Point K.

$$\tau_{\rm max} = CE = R = 75.1 \,\mathrm{MPa} \qquad \theta_s = 22.8^\circ\,\mathrm{s}$$

# **Example 2**



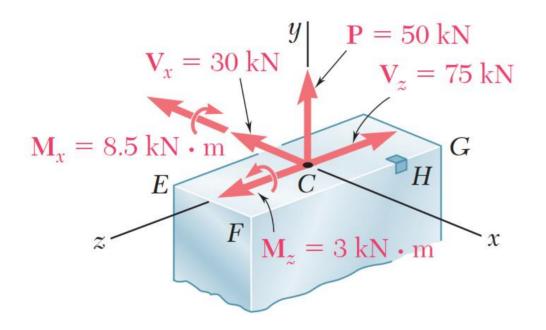
For the loading shown determine the principal stresses, principal planes, and maximum shearing stress at point *H*.

$$V_x = -30 \,\mathrm{kN}$$
  $P = 50 \,\mathrm{kN}$   $V_z = -75 \,\mathrm{kN}$ 

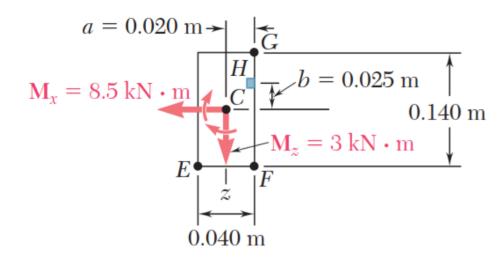
Internal Forces in Section EFG.

$$M_x = (50 \text{ kN})(0.130 \text{ m}) - (75 \text{ kN})(0.200 \text{ m}) = -8.5 \text{ kN} \cdot \text{m}$$

 $M_y = 0$   $M_z = (30 \text{ kN})(0.100 \text{ m}) = 3 \text{ kN} \cdot \text{m}$ 



$$A = (0.040 \text{ m})(0.140 \text{ m}) = 5.6 \times 10^{-3} \text{ m}^2$$
$$I_x = \frac{1}{12}(0.040 \text{ m})(0.140 \text{ m})^3 = 9.15 \times 10^{-6} \text{ m}^4$$
$$I_z = \frac{1}{12}(0.140 \text{ m})(0.040 \text{ m})^3 = 0.747 \times 10^{-6} \text{ m}^4$$



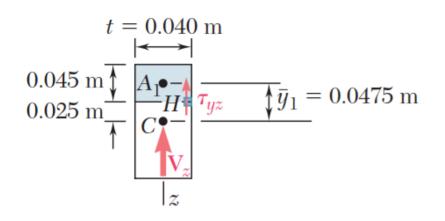
Normal Stress at *H*.

$$\sigma_{y} = +\frac{P}{A} + \frac{|M_{z}|a}{I_{z}} - \frac{|M_{x}|b}{I_{x}}$$

$$= \frac{50 \text{ kN}}{5.6 \times 10^{-3} \text{ m}^{2}} + \frac{(3 \text{ kN} \cdot \text{m})(0.020 \text{ m})}{0.747 \times 10^{-6} \text{ m}^{4}} - \frac{(8.5 \text{ kN} \cdot \text{m})(0.025 \text{ m})}{9.15 \times 10^{-6} \text{ m}^{4}}$$

$$\sigma_{y} = 8.93 \text{ MPa} + 80.3 \text{ MPa} - 23.2 \text{ MPa}$$

$$\sigma_{y} = 66.0 \text{ MPa}$$



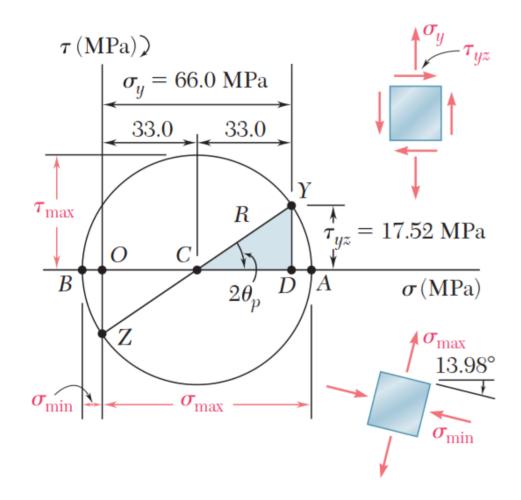
Considering the shearing force  $V_x$ , we note that Q = 0 with respect to the *z* axis, since *H* is on the edge of the cross section. Thus,  $V_x$  produces no shearing stress at *H*.

The shearing force  $V_z$  does produce a shearing stress at H

### **Shearing Stress at** *H*.

$$Q = A_1 \bar{y}_1 = [(0.040 \text{ m})(0.045 \text{ m})](0.0475 \text{ m}) = 85.5 \times 10^{-6} \text{ m}^3$$
  
$$\tau_{yz} = \frac{V_z Q}{I_x t} = \frac{(75 \text{ kN})(85.5 \times 10^{-6} \text{ m}^3)}{(9.15 \times 10^{-6} \text{ m}^4)(0.040 \text{ m})} \qquad \tau_{yz} = 17.52 \text{ MPa}$$

### **Principal Stresses, Principal Planes, and Maximum Shearing Stress at** *H***.**



$$\tan 2\theta_p = \frac{17.52}{33.0} \qquad 2\theta_p = 27.96^{\circ}$$

$$R = \sqrt{(33.0)^2 + (17.52)^2} = 37.4 \text{ MPa}$$

$$\sigma_{\text{max}} = OA = OC + R = 33.0 + 37.4$$

$$\sigma_{\text{min}} = OB = OC - R = 33.0 - 37.4$$

$$\theta_p = 13.98^{\circ}$$

$$\tau_{\text{max}} = 37.4 \text{ MPa}$$

$$\sigma_{\text{max}} = 70.4 \text{ MPa}$$

$$\sigma_{\text{min}} = -7.4 \text{ MPa}$$