
Shearing Stresses in Beams
and

Thin-Walled Members

Part II



Shearing Stresses In Thin-walled Members

• The longitudinal shear and horizontal shear per unit length (shear flow) are used in
this section to calculate both the shear flow and the average shearing stress in
thin-walled members such as the flanges of wide-flange beams, box beams, or the
walls of structural tubes
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• Consider a segment of length ∆𝑥 of a wide-flange beam where 𝑉 is the vertical shear in the

transverse section shown. Detach an element ABB’A’ of the upper flange. The longitudinal

shear ∆𝐻 exerted on that element can be obtained as

• Dividing ∆𝐻 by the area ∆𝐴 = 𝑡∆𝑥 of the cut, the average shearing stress exerted on the

element is the same expression obtained in the previous course for a horizontal cut:
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• Note that 𝜏𝑎𝑣𝑒 now represents the average value of the shearing

stress 𝜏𝑧𝑥 over a vertical cut, but since the thickness t of the

flange is small, there is very little variation of 𝜏𝑧𝑥 across the cut.

• Recalling that 𝜏𝑧𝑥 = 𝜏𝑥𝑧, the horizontal component 𝜏𝑥𝑧 of the

shearing stress at any point of a transverse section of the flange

can be obtained from 𝜏𝑎𝑣𝑒 =
𝑉𝑄

𝐼𝑡
, where 𝑄 is the first moment of

the shaded area about the neutral axis.



• A similar result was obtained for the vertical component 𝜏𝑥𝑦 of the

shearing stress in the web.

• 𝜏𝑎𝑣𝑒 =
𝑉𝑄

𝐼𝑡
can be used to determine shearing stresses in box beams,

half pipes, and other thin-walled members, as long as the loads are

applied in a plane of symmetry.



• In each case, the cut must be perpendicular to the surface of the

member, and 𝜏𝑎𝑣𝑒 =
𝑉𝑄

𝐼𝑡
will yield the component of the shearing stress

in the direction tangent to that surface.

• The other component is assumed to be equal to zero, because of the

proximity of the two free surfaces.



• Comparing 𝑞 =
𝑉𝑄

𝐼
and 𝜏𝑎𝑣𝑒 =

𝑉𝑄

𝐼𝑡
, the product of the shearing stress 𝜏 at a given point of the

section and the thickness 𝑡 at that point is equal to 𝑞.

• Since 𝑉 and 𝐼 are constant, 𝑞 depends only upon the first moment 𝑄 and easily can be sketched on

the section.

• For a box beam, 𝑞 grows smoothly from zero at 𝐴 to a maximum value at 𝐶

and 𝐶’ on the neutral axis and decreases back to zero as 𝐸 is reached.

• There is no sudden variation in the magnitude of 𝑞 as it passes a corner at

𝐵, 𝐷, 𝐵’, or 𝐷’, and the sense of 𝑞 in the horizontal portions of the section

is easily obtained from its sense in the vertical portions (the sense of the

shear 𝑉).





Shear Flow in Common Thin-Walled Members



Example

The thin-walled box beam in figure is
subjected to a shear of 200 kN. Determine
the variation of the shear flow throughout
the cross section.



Solution

At point B. since y′ = 0

At point C.



Solution

At point D.

Using these results, and the
symmetry of the cross
section, the shear-flow
distribution is



Sample Problem 6.3

Knowing that the vertical shear is 50 kips in a W10 X 68 rolled-steel beam,
determine the horizontal shearing stress in the top flange at a point a located 4.31
in. from the edge of the beam. The dimensions and other geometric data of the
rolled-steel section are given in
Appendix C.

𝑄 = 4.31 𝑖𝑛. 0.770 𝑖𝑛. 4.815 𝑖𝑛. = 15.98 𝑖𝑛3

𝜏 =
𝑉𝑄

𝐼𝑡
=

50 kips 15.98 in3

(394 𝑖𝑛3)(0.770 𝑖𝑛.)
→ 𝜏 = 2.63 𝑘𝑠𝑖



Unsymmetric Loading Of Thin-walled Members and Shear Center

• Our analysis of the effects of transverse loadings has been limited to members

possessing a vertical plane of symmetry and to loads applied in that plane.

• The members were observed to bend in the plane of loading, and in any given

cross section, the bending couple M and the shear V were found to result in

normal and shearing stresses:

𝜎𝑥 = −
𝑀𝑦

𝐼
and 𝜏𝑎𝑣𝑒 =

𝑉𝑄

𝐼𝑡



• In this section, the effects of transverse loads on thin-walled
members that do not possess a vertical plane of symmetry are
examined.

• Assume that the channel member has been rotated through 90° and
that the line of action of P still passes through the centroid of the end
section.

• The couple vector M representing the bending moment in a given
cross section is still directed along a principal axis of the section, and
the neutral axis will coincide with that axis.

• 𝜎𝑥 = −
𝑀𝑦

𝐼
can be used to compute the normal stresses in the

section. However, 𝜏𝑎𝑣𝑒 =
𝑉𝑄

𝐼𝑡
cannot be used to determine the

shearing stresses, since this equation was derived for a member
possessing a vertical plane of symmetry.



• Actually, the member will be observed to bend and twist under the

applied load, and the resulting distribution of shearing stresses will be

quite different from that given by 𝜏𝑎𝑣𝑒 =
𝑉𝑄

𝐼𝑡
.

• Is it possible to apply the vertical load P so that the channel member of

figure will bend without twisting?

• If so, where should the load P be applied?



• If the member bends without twisting, the shearing stress at any point of a given cross section can be

obtained from 𝜏𝑎𝑣𝑒 =
𝑉𝑄

𝐼𝑡
, where 𝑄 is the first moment of the shaded area with respect to the neutral axis

and the distribution of stresses is as shown with 𝜏 = 0 at both A and E.



• The shearing force exerted on a small element of cross-sectional area 𝑑𝐴 = 𝑡𝑑𝑠 is 𝑑𝐹 = 𝜏𝑑𝐴 = 𝜏𝑡𝑑𝑠 or

𝑑𝐹 = 𝑞𝑑𝑠, where 𝑞 is the shear flow 𝑞 = 𝜏𝑡 = Τ𝑉𝑄
𝐼. The resultant of the shearing forces exerted on the

elements of the upper flange AB of the channel is a horizontal force 𝐹 of magnitude

𝐹 = න

𝐴

𝐵

𝑞𝑑𝑠

• Because of the symmetry of the channel section about its neutral axis, the resultant of the shearing forces

exerted on the lower flange DE is a force 𝐹′ of the same magnitude as 𝐹 but of opposite sense.



• The resultant of the shearing forces exerted on the web BD must be equal to the vertical shear V in the 

section:

𝑉 = න

𝐵

𝐷
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• The forces 𝐹 and 𝐹′ form a couple of moment 𝐹 × ℎ, where ℎ is the distance between the center lines

of the flanges AB and DE. This couple can be eliminated if the vertical shear 𝑉 is moved to the left

through a distance 𝑒 so the moment of 𝑉 about B is equal to 𝐹 × ℎ. Thus, 𝑉 × 𝑒 = 𝐹 × ℎ or

𝑒 =
𝐹ℎ

𝑉



• When the force P is applied at a distance e to the left of the center line of the web BD, the member

bends in a vertical plane without twisting.

• The point O where the line of action of P intersects the axis of symmetry of the end section is the shear

center of that section.



• In the case of an oblique load P, the member will also be free of twist if the load P is applied at the shear 

center of the section.

• The load P then can be resolved into two components 𝑃𝑧 and 𝑃𝑦 neither of which causes the member to 

twist.
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