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INTRODUCTION

Flx) Flx) * For the bracketing methods in previous part, the

-

root is located within an interval prescribed by a
lower and an upper bound.

* Repeated application of the bracketing methods

Y

always converges (figure a).

(b) * In contrast, the open methods described in this

=

fx) part are based on formulas that require only a
single starting value of x or two starting values
that do not necessarily bracket the root.

* Thus, open methods may diverge (figure b) or

converge very rapidly (figure c).




3.4 SIMPLE ONE-POINT ITERATION

In this method, the following procedure is applied:

1. Put the original formulation of f(x) = 0 into a form of x=g(x) so that x is on the left-

hand side of the equation.

Or, alternatively add x to both sides of the equation to yield into a form of x=g(x). For

example:

.(.E +3 Taking x on the left-
1,2 —2x+3=0 > X =- hand side of the
2 equation
siny = 0 » ¥ =sinx +x Adding x on both side

of the equation



Start with initial estimate x;
Calculate a new estimate for the root using x;,.; = g(x;)
As with the other iterative formulas, the approximate error for this equation can be

determined using the error estimator:

Xit+l — Xj P
Eq = | 1009%
| Xit1

Method converges if |g'(x)| < 1 in the region of interest.



Example:

Use simple fixed-point iteration to locate the root of f(x) = e™ — x.

f[:T] —e Yy — Xj = g—Yi

Starting with an initial guess of xg = 0, this iterative equation can be applied to compute

i X £a (%) et (%)
0 O 100.0
I 1.000000 100.0 76.3
2 0.36/8/79 1/1.8 35.1
3 0.692201 46.9 221
4 0.5004/73 38.3 11.8
5 0.606244 174 6.89
& 0.545396 11.2 3.83
7 0.5/79612 5.90 2.20
8 0.560115 3.48 1.24
@ 0.5/71143 1.93 0./705
10 0.5648/79 1.11 0.399



Checking the Possibility to Converge:

Let’s check the convergency of the previous solution by applying two-curve graphical method. In this
method, the function is separated into two component parts, as in

filx) = fox) where  y; = fi(x)  y2= f2(x)

The x values corresponding to the intersections of these functions represent the roots of f(x) = 0.

Reformulate the equationas V1 =X and vz = e ) 4 |
i
0.819 |
x A y2 0.670 |
0.0 0.0 1.000 0.549 '
0.2 0.2 0819 0.449
0.4 0.4 0.670 0.368
0.6 0.6 0.549
0.8 0.8 0.449
1.0 1.0 0.368 02

02 04 06 08 1.0 25

The intersection of the two curves indicates a root estimate of approximately x = 0.57



Example:
Find the minimum positive root of the function.
fx)=x3—x—-3=0
Solution: The given equation can be transformed into x=g(x) in 3 different ways:
Dx=x3-3=g()
2)x =Vx+3=gkx)

3 x=——=g(x)

The results obtained when simple iteration is applied with all three equations by taking the initial

value (x,=1.5) are given in the table below.



Iteration (n) Xiy1 = X7 — 3 Xit1 = 1/ X+ 3 Xiy1 = X1

0 1.5 1.5 1.5

1 0.375 1.651 2.4

2 -2.947 1.669 0.63

3 -28.601 1.671 -4.974

4 -23399.241 1.672 0.126

5 1.672 -3.049

6 0.362

7

-3.452




In the previous example, although the initial value is the same, it is seen that there is not always
convergence and only one of the three states gives results.

In other words, when the given function is written in the form x=g(x), it should be written in an
appropriate manner, not randomly. Otherwise, convergence cannot be achieved, and a solution
cannot be reached. The appropriate x=g(x) form is the form that satisfies the convergence criterion.

Therefore, out of the three different expressions written above, only the second form that meets

the convergence criterion gives results.



Convergence Criteria:

If the real root (x,-) is written in the equation x;,; = g(x;), the equation becomes x,- = g(x,).

Then, two equations are subtracted side to side:
Xiv1 — Xr = g(x;) — g(xy)

* If the right-hand side of this expression is multiplied and divided by the term x;,; — x,,,and where x. is a
value between x; and x,..

Xis1 = % = (g(x) = g()) Tk = SEOEU (5, — )

= gl(xs)(xi — Xr) From the mean value
theorem,derivative of the

, function g’ (x;)

Xit1 — Xr = g (xs) (x; — x7) , g(x;) —g(xr)
_ !/ g (xS) —

i1 =g (Xs). & Xi — Xr

* In order for convergence to occur, the error must decrease during the iteration. Thus in order to convergence,

* And absolute error ¢ :

lg'(xs)| < 1



Example: Investigate the convergence criterion in the previous question.

The given equation was written as x = g(x) in three different ways. In each case, let's take the derivative of the

g(x) function and examine it around the root.

1)x=x>-3 g'(x) = 3x? 19" (xs)| > 1
_ 3 ! _ 1 /

2)x = Vx+3 g(x)——gm 19" (xs)| <1
3 ’ 6 ’

3) x = o 9'() =~ 9" (xs)| > 1

Only the second of these derivatives is always less than 1 for positive values of x. Therefore, the second way of

writing definitely satisfies the convergence condition.

The first equation is always greater than one for x > 0.58, the last one is generally greater than one and less

than one for some x values. Therefore, they should not be expected to yield results in simple iterations.
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We can use the two-curve graphical method to check convergence |g’(x)|<1.

The two-curve method can
be used to illustrate the
convergence and divergence
of fixed-point iteration.

First, equations can be re-
expressed as a pair of
equations y, =x and y, = g(x).
These two equations can
then be plotted separately.
The roots of f(x)=0
correspond to the abscissa
value at the intersection of
the two curves.



3.5. Newton-Raphson Method

flx) 4 * The most widely used of all root-locating methods is the
Newton-Raphson Method.

* The Newton-Raphson method can be derived on the basis
of this geometrical interpretation. The first derivative at x is

) b---———-——-——-—————- equivalent to the slope:

Slope = f"(x)

/ I:IF' T []
fix;) = Si)
- flx) -0 Xi — Xj+1

which can be rearrenged to yield

|

. f(:‘:i}
S'(x;)

Xit+l = X

which is called the Newton-Raphson formula.

* Asinthe other root finding methods, percent relative error can be used as termination criteria. So, the

iterative calculations is repeated until
€a| < &5



Example. Use the Newton-Raphson method to estimate the root of f(x) = e — x.  employing an
initial guess of x,=0.

B J(x;) e ' —x;
J(x;) -

fr{.'[) =—e " -1 — Xitl = X

Starting with an initial guess of xo = 0, this iterative equation can be applied to compute

i X et (%)

0 0 100

1 0.500000000 11.8

2 0.566311003 0.147

3 0.567143165 0.0000220
4 0.567143290 <10-¢

Thus, the approach rapidly converges on the true root. Notice that the true percent relative
error at each iteration decreases much faster than it does in simple fixed-point iteration



Example 2

Find the root of third order polynomial with an initial estimate of the root of 6.0
flx) =x3 — x> — 10x — 8

The derivative of this function is

f'x) = 3x%2 - 2x - 10
The first trial estimate

(6)°—(6)*—10(6)—8

2 = 6—1.3023 = 4.6977
3(6)> — 2(6)—10

X, =6—



Using this value as the revised estimate of x,=4.6977, the second estimate

(4.6977)° — (4.6977)* —10(4.6977)— 8
3(4.6977)" — 2(4.6977)—10
= 4.6977 — 0.5688 = 4.1289

X) =4.67977 —

A third trial would yield an estimate of the root of 4.0057, and
The fourth trial would yield a value of 4.0000

For precision to five significant digits, the value does not change with additional

iterations:



NONCONVERGENCE

The Newton—Raphson iteration usually converges to a root faster than does the
bisection method. However, this increase in speed does not come without
liabilities; under certain circumstances, Newton—Raphson iteration may fail to
converge.

If the initial estimate is selected such that the derivative of the function equals
zero. f(x;)/f '(x;) would equal infinity

AN
f(x) : :
/ f'(x) is approaching zero

N

X0 X1 X9

x value



A second instance of nonconvergence would occur if f(x)/f '(x) equals —f(x.,,)/f '(x.,).
In this case, x; would equal x,,, (where i is the iteration number) and x,,, would equal

i+1
X3 - Thus the solution would involve iterating between values of x; and x;,,

S ) X1 =X3 =X

similarity of slopes

f(x) i\ excessive iteration
X because of the
/ %o \A/ *2 \/ periodic function




A large number of iterations will be required if the value of f (x) is much larger
than f(x).
In such cases, f(x)/f '(x) is small, which leads to a small adjustment at each
iteration.

This situation can occur, for example, when the root of a polynomial is near
Zero.

Excessive Iteration
f(x) because of the poor
initial estimate




3.6. THE SECANT METHOD

A potential problem in implementing the f )
Newton-Raphson method is the evaluation

of the derivative. Although this is not /i-1)
inconvenient for polynomials and many
other functions, there are certain functions J®)
whose derivatives may be extremely £
difficult or inconvenient to evaluate. For
these cases, the derivative can be
approximated by a backward finite divided
difference:

f+l)

J(xiz) = F(x)

Xi—1 — X

AN

NN\

/ Root

Xi_1 X X4 \ flx)=0

x value

Flx) = — | X = X

I

J(x) (xizy — x;)

S(xiz) — f(x:)




Example. Use the secant method to estimate the root of 'f(x) = e — x.

Employ an initial
estimates of x ;=0 and x,=1.0.

First iteration:
x_; =0 flx_;) = 1.00000

xp =1 flxg) = —0.63212

—0.63212(0 - 1)

r=1— _ 061270 & = 8.0%
. [ — (—0.63212) i ’




Second iteration:

xp =1 flxg) = —0.63212
x1 = 0.61270 filx1) = —0.07081

(Note that both estimates are now on the same side of the root.)

—0.07081(1 — 0.61270)
¥ = 0.61270 — — 0.56384 — 0.58%
Y2 20.63212 — (—0.07081) o °

Third iteration:

x; = 0.61270 flx1) = —0.07081
xp = 0.56384 flxz) = 0.00018

x; = 0.56384 — 200918061270 = 0.5638) _  sery7 o _ 0.0048%

—0.07081 — (—0.00518)




3.6.1 Difference Between Secant and False-position Method

F(x; )(x;-1 - x;)
f(x;_;) - f(x;)

False position Secant
fx) 4 f(x,) flx) ! fix;)

FOxy ) - xy)
f(x, ) - f(xy)

Secant: Xj,1 =X;- False-Position: x=xy

« First iterations of both methods are the same.

« Second iterations are different in terms of how
the previous estimates are replaced with the
newly calculated root.

» False-position Method drops one of previous
estimates so that the remaining ones bracket
the root.

flx)4

« Secant Method always drops the oldest
estimate.




3.7 Multiple Roots

A multiple root corresponds to a point where a function is tangent to the x axis. For example, a double

root results from

Sx)=(x—-3)(x—1)(x —1)

The equation has a double root because one value of x makes two terms.
Graphically, this corresponds to the curve touching the x axis tangentially at the
double root. Examine Fig. (a) at x = 1. Notice that the function touches the axis
but does not cross it at the root.

A triple root corresponds to the case where one x value makes three terms in an
equation equal to zero, as in

fx)=(x—-3)x—-—Dix—D(x—1)

Notice that the graphical depiction (Fig. (b)) again indicates that the function is
tangent to the axis at the root, but that for this case the axis is crossed. In general,
odd multiple roots cross the axis, whereas even ones do not.

f)
4

[ |

— Double
root

(b)



As summary:

1. The fact that the function does not change sign at even multiple roots precludes the use of the
reliable bracketing methods that were discussed in previous lecture. Thus, of the methods
covered in this course, you are limited to the open methods that may diverge.

2. Another possible problem is related to the fact that not only f (x) but also f (x) goes to zero at the
root. This poses problems for both the Newton-Raphson and secant methods, which both contain
the derivative (or its estimate) in the denominator of their respective formulas. This could result
in division by zero when the solution converges very close to the root.

Some modifications can be made for this issue:

i) If you know the multiplicity of the root, Newton-Raphson formula can be modified as

.ﬁxr’] .
Xigl = X; — M () m=2 for a double root, m=3 for a triple root, etc.
g




ii) Another alternative is to define a new function u(x)=f(x)/f ‘(x) and use it in the formulation of
Modified Newton Raphson Method (developed by Ralston and Rabinowitz 1978)

B Jx) f(x:)
[JC"(JC;:)]2 — f(x) (%)

Example: Use both the standard and modified Newton-Raphson methods to evaluate the multiple root
of following equation with an initial guess of x, = 0.

Xig1 = X

JX)=x-3)x - Dx-1)

The first derivative of the equation f'(x) = 3x2 — 10x &+ 7

In standart Newton-Raphson method: xr?" — 5:-:1.2 + Tx; — 3
Xitl = X7 — 7
Jx; — 10x; + 7




By solving iteratively: For the modified method, the second derivative is

x3 —5x? + Tx; — 3 f7(x) =6x — 10
Xi+l = X5 — 7
Sx; — 10x; 47 (x3 — 5x2 4+ Tx; — 3)(3x2 — 10x; + 7)
Xit+l = Xj —
’ (3x2 — 10x; +7)° — (x3 — 5x% + Tx, — 3)(6x; — 10)

i X; gt (%)

i Xj et (%)
0 0 100
] 0.4285714 57 Q 0 100
2 0.6857143 3] ; ] -(;ggégg 15 N
3 0.8328654 17 3 1.0000072 000024
4 0.9133290 8.7
5 0.9557833 4.4 . . .
4 0.077655] 59 Thus, the modified formula is quadratically

convergent.

The method is linearly convergent toward the true
value of 1.0.



3.8 SYSTEMS OF NONLINEAR EQUATIONS

To this point, we have focused on the determination of the roots of a single equation. A related
problem is to locate the roots of a set of simultaneous equations,

Ji(x1,x2, ..., x,) =0
fE(II,IE,...,IH) =0

.)f;l'(xl'.-xg-,. - ?I”) p— U

The solution of this system consists of a set of x values that simultaneously result in all the equations
equaling zero.



3.8.1. Solving by Simple One-point Iteration

Example: a2 _
fikx,y) = x* +xy =10 Solve the equations using the fixed-point iteration method

f2(x,y) = y + 3xy* =57 and taking the initial values xo = 1.5, y, = 3.5

1. Solution: We leave one unknown in the given functions and write them as x=g(x,y) and y=h(x,y).

—_— 10 — x 10 — (1.5)2
1. Iteration: Xy = —, x = (1.5) = 2.21429
Vi 3.5

= 57 — 3y
Vier =TT 3GN = 57 - 3(221429)(3.5) = —24.37516

2. Iteration: ~ _ 10 — (2.21429)"
T 2437516
y = 57 — 3(—0.20910)( —24.37516)" = 429.709

= —0.20910

There appears to be divergence in the results. This is primarily due to the way we write the
equations.



2. Solution: Let's write the equations x=g(x,y) and y=h(x,y) in a different format:

1. Iteration: x=VI0 —xy x=V10 - 1.5(3.5) = 2.17945

I57 — v / 57 — 3.5

== - = = 2.86051
Y=\ ¥ T\ 3(2.17945)

2. lteration: — \/10) — 2.17945(2.86051) = 1.94053

|57 — 2.86051
Y7 N 3(1.94053)

= 3.04955

lterations are continued until the desired tolerance value is approached.



As can be seen from the example, convergence to root values in this method is highly
dependent on the equation format and initial values chosen at the beginning. If the
equations chosen at the beginning can satisfy the equations given below, convergence will

OCCUr.

oh| |21
0x dy

ofa| , |9F2
0x dy

<1

<1




3.8.2 Solving by Generalized Newton-Raphson Method

f1(x;Y) =0

Let a nonlinear system with two unknowns, x and y, be given as follows.
fZ(xl Y) =0

Jacobian matrix [0f; O0f;]

\ dx 0dy [Ax _ fl]
of 0f2|lAy]  Lf,
| dx 0y

Jx, y0). A= —f; = A= J 7 (x, y0). — f;

The values of Ax, Ay are obtained from the solution of the system of linear equations above. The roots of the

equation are calculated according to these values as follows.

9, 0
fl f2 fz fl afZ fl afl fZ xl,i-l-l = xlli + Axl

Ax = Ay =
df; 0 df; 0 af af af df.
f1 f2 f1 f2 19J2 0J10)7 Viie1 = Yo + Ays

dx 0y 0y 0x dx dy 0y 0x




Example: _ 22 _
filx,y) = x*+xy =10 Solve the equations using the Newton-Raphson method and using one

fo(x,y) =y + 3xy? =57 iteration, taking the initial values x, = 1.5, y, = 3.5.
1.lteration
6f1 afz
] 0
Oh _9 2 hay—10)=2x+y =65 . ayf27 3y i 15x1.625-325%-25 053603
ox  0x X = = -
afl f, _afl df, 6.5%32.5—1.5%36.75
dx dy 0Jy 0x
] ]
£=—(x2+xy—10) =x =15
dy 0y 6fz 0f1
of o A x 1™ 3x /2 3675%-25-65%1.625 0656125
—2 = —(y + 3xy? — 57) = 3y% = 36.75 Y= 01‘1 0fp 0f1 0f,  65%325-15%3675
ox 0x ox dy Jy 0x
] ]
ﬁ=_(y+3xy2 —57)=1+6xy =325
dy Oy x; = xo + Ax = 1.5 + 0.53603 = 2.03603
fi=x*+xy—10=-25 y1 = Yo + Ay = 3.5+ 0.656125 = 2.84388

fo =y +3xy% —57 = 1.625



NEXT WEEK
Solutions of Linear Equation Systems
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