ME 209 Numerical Methods

8. Regression 2
Non-linear Regression

Asst. Prof. Dr. Nurettin Furkan DOĞAN

Mechanical Engineering Department

Gaziantep University

7.2 Nonlinear Regression

Given n data points $(x_1, y_1), (x_2, y_2), \dots, (xn, yn)$ best fit y = f(x) to the data, where f(x) is a nonlinear function of x.

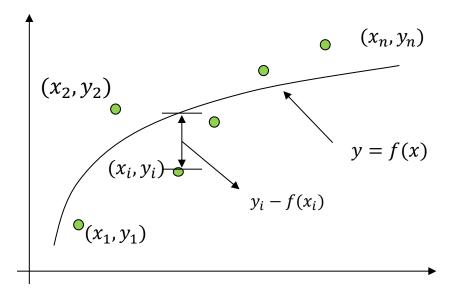


Figure. Nonlinear regression model for discrete y vs. x data

Some popular nonlinear regression models:

$$(y = ae^{bx})$$

$$(y = ax^b)$$

3. Saturation growth model:
$$\left(y = \frac{ax}{b+x}\right)$$

$$(y = a_0 + a_1 x + \dots + a_n x^n)$$

Exponential Model

Given (x_1, y_1) , (x_2, y_2) , ... (x_n, y_n) , best fit $y = ae^{bx}$ to the data. The variables a and b are the constants of the exponential model. The residual at each data point x_i is

$$E_i = y_i - ae^{bx_i}$$

The sum of the square of the residuals is

$$S_{r} = \sum_{i=1}^{n} E_{i}^{2}$$
$$= \sum_{i=1}^{n} (y_{i} - ae^{bx_{i}})^{2}$$

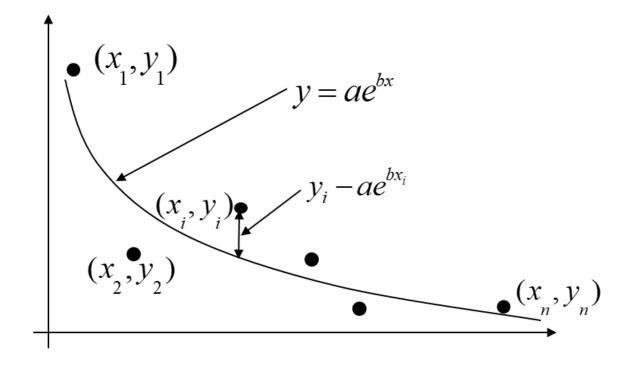


Figure. Exponential model of nonlinear regression for y vs. x data

Finding Constants of Exponential Model

To find the constants a and b of the exponential model, we minimize S_r by differentiating with respect to a and b and equating the resulting equations to zero. Rewriting the equations, we obtain

$$-\sum_{i=1}^{n} y_i e^{bx_i} + a \sum_{i=1}^{n} e^{2bx_i} = 0$$

$$\sum_{i=1}^{n} y_i x_i e^{bx_i} - a \sum_{i=1}^{n} x_i e^{2bx_i} = 0$$

Solving the first equation for *a* yields

$$a = \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}}$$

Substituting *a* back into the previous equation

$$\sum_{i=1}^{n} y_i x_i e^{bx_i} - \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}} \sum_{i=1}^{n} x_i e^{2bx_i} = 0$$

The constant b can be found through numerical methods such as bisection method or the secant method.

Example 1-Exponential Model

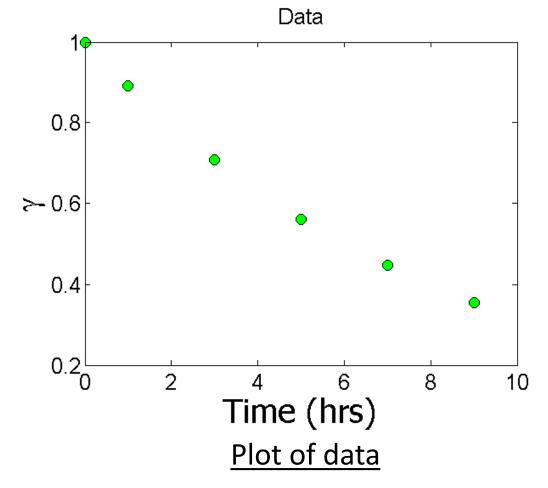
Many patients get concerned when a test involves injection of a radioactive material. For example for scanning a gallbladder, a few drops of Technetium-99m isotope is used. Half of the Technetium-99m would be gone in about 6 hours. It, however, takes about 24 hours for the radiation levels to reach what we are exposed to in day-to-day activities. Below is given the relative intensity of radiation as a function of time.

Table. Relative intensity of radiation as a function of time.

t(hrs)	0	1	3	5	7	9
γ	1.000	0.891	0.708	0.562	0.447	0.355

The relative intensity is related to time by the equation Find:

- $\gamma = Ae^{\lambda t}$
- a) The value of the regression constants $\,A\,$ and $\,\lambda\,$
- b) The half-life of Technetium-99m
- c) Radiation intensity after 24 hours



a) The value of λ is given by solving the nonlinear Equation

$$\sum_{i=1}^{n} y_{i} x_{i} e^{bx_{i}} - \frac{\sum_{i=1}^{n} y_{i} e^{bx_{i}}}{\sum_{i=1}^{n} e^{2bx_{i}}} \sum_{i=1}^{n} x_{i} e^{2bx_{i}} = 0 \qquad f(\lambda) = \sum_{i=1}^{n} \gamma_{i} t_{i} e^{\lambda t_{i}} - \frac{\sum_{i=1}^{n} \gamma_{i} e^{\lambda t_{i}}}{\sum_{i=1}^{n} e^{2\lambda t_{i}}} \sum_{i=1}^{n} t_{i} e^{2\lambda t_{i}} = 0$$
Equation above can be solved for λ using bisection method. To estimate the initial guesse

Equation above can be solved for λ using bisection method. To estimate the initial guesses, we assume $\lambda = -0.120$ and $\lambda = -0.110$. We need to check whether these values first bracket the root of $f(\lambda) = 0$. At $\lambda = -0.120$, the table below shows the evaluation of f(-0.120).

Table 2 Summation value for calculation of constants of model

i	t_i	γ_i	$\gamma_i t_i e^{\lambda t_i}$	$\gamma_i e^{\lambda t_i}$	$e^{2\lambda t_i}$	$t_i e^{2\lambda t_i}$
1	0	1	0.00000	1.00000	1.00000	0.00000
2	1	0.891	0.79205	0.79205	0.78663	0.78663
3	3	0.708	1.4819	0.49395	0.48675	1.4603
4	5	0.562	1.5422	0.30843	0.30119	1.5060
5	7	0.447	1.3508	0.19297	0.18637	1.3046
6	9	0.355	1.0850	0.12056	0.11533	1.0379
$\sum_{i=1}^{6}$			6.2501	2.9062	2.8763	6.0954

From Table 2 n = 6

$$\sum_{i=1}^{6} \gamma_i t_i e^{-0.120t_i} = 6.2501$$

$$\sum_{i=1}^{6} \gamma_i e^{-0.120t_i} = 2.9062$$

$$\sum_{i=1}^{6} e^{2(-0.120)t_i} = 2.8763$$

$$\sum_{i=1}^{6} t_i e^{2(-0.120)t_i} = 6.0954$$

$$f(-0.120) = (6.2501) - \frac{2.9062}{2.8763}(6.0954) = 0.091357$$
 $f(-0.110) = -0.10099$

Table 2 Summation value for calculation of constants of model

i	t_i	γ_i	$\gamma_i t_i e^{\lambda t_i}$	$\gamma_i e^{\lambda t_i}$	$e^{2\lambda t_i}$	$t_i e^{2\lambda t_i}$
1	0	1	0.00000	1.00000	1.00000	0.00000
2	1	0.891	0.79205	0.79205	0.78663	0.78663
3	3	0.708	1.4819	0.49395	0.48675	1.4603
4	5	0.562	1.5422	0.30843	0.30119	1.5060
5	7	0.447	1.3508	0.19297	0.18637	1.3046
6	9	0.355	1.0850	0.12056	0.11533	1.0379
$\sum_{i=1}^{6}$			6.2501	2.9062	2.8763	6.0954

Similarly (At $\lambda = -0.110$)

$$f(-0.110) = -0.10099$$

Since $f(-0.120) \times f(-0.110) < 0$, the value of λ falls in the bracket of [-0.120, -0.110].

The next guess of the root then is

$$\lambda = \frac{-0.120 + (-0.110)}{2} = -0.115$$

Continuing with the bisection method, the root of $f(\lambda) = 0$ is found as $\lambda = -0.11508$.

and the value of A

$$A = \frac{\sum_{i=1}^{n} \gamma_{i} e^{\lambda t_{i}}}{\sum_{i=1}^{n} e^{2\lambda t_{i}}} = \frac{1 \times e^{-0.11508(0)} + 0.891 \times e^{-0.11508(1)} + 0.708 \times e^{-0.11508(3)} + }{\frac{0.562 \times e^{-0.11508(5)} + 0.447 \times e^{-0.11508(7)} + 0.355 \times e^{-0.11508(9)}}{e^{2(-0.11508)(0)} + e^{2(-0.11508)(1)} + e^{2(-0.11508)(3)} + }} = \frac{2.9373}{2.9378} = 0.99983$$

The regression formula is hence given by

$$\gamma = 0.99983 e^{-0.11508t}$$

b) Half life of Technetium-99m is when $\gamma = \frac{1}{2} \gamma \Big|_{t=0}$

$$0.99983 \times e^{-0.11508t} = \frac{1}{2} (0.99983) e^{-0.11508(0)}$$

$$e^{-0.11508t} = 0.5$$

$$-0.11508t = \ln(0.5)$$

$$t = 6.0232$$
 hours

c) The relative intensity of the radiation after 24 hrs is

$$\gamma = 0.99983 \times e^{-0.11508(24)}$$
$$= 6.3160 \times 10^{-2}$$

This result implies that only

$$\frac{6.316\times10^{-2}}{0.9998}\times100=6.317\%\quad\text{radioactive intensity is left after 24 hours.}$$

Polynomial Model

Given n data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ use least squares method to regress the data to an m^{th} order polynomial. $y = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m, m < n$

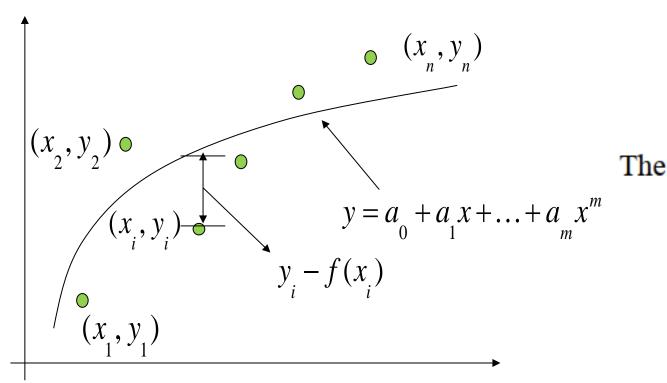


Figure. Polynomial model for nonlinear regression of y vs. x data

The residual at each data point is given by

$$E_i = y_i - a_0 - a_1 x_i - \ldots - a_m x_i^m$$

The sum of the square of the residuals is given by

$$S_r = \sum_{i=1}^n E_i^2$$

$$= \sum_{i=1}^n (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m)^2$$

To find the constants of the polynomial regression model, we put the derivatives with respect to a_i to zero, that is,

$$\frac{\partial S_r}{\partial a_0} = \sum_{i=1}^n 2(y_i - a_0 - a_1 x_i - \dots - a_m x_i^m)(-1) = 0$$

$$\frac{\partial S_r}{\partial a_1} = \sum_{i=1}^n 2(y_i - a_0 - a_1 x_i - \dots - a_m x_i^m)(-x_i) = 0$$

$$\frac{\partial S_r}{\partial a_m} = \sum_{i=1}^n 2(y_i - a_0 - a_1 x_i - \dots - a_m x_i^m)(-x_i^m) = 0$$

Setting those equations in matrix form gives

$$\begin{bmatrix} n & \left(\sum_{i=1}^{n} x_{i}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{m}\right) \\ \left(\sum_{i=1}^{n} x_{i}\right) & \left(\sum_{i=1}^{n} x_{i}^{2}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \left(\sum_{i=1}^{n} x_{i}^{m}\right) & \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{2m}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ a_{1} \\ \vdots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} \\ y_{i} \end{bmatrix}$$

The above are solved for $a_0, a_1, ..., a_m$

Example

Regress (fit) the thermal expansion coefficient vs. temperature data to a second order polynomial.

Table. The thermal expansion coefficient at given different temperatures

Temperature, T (°F)	Coefficient of thermal expansion, α (in/in/°F)
80	6.47×10 ⁻⁶
40	6.24×10 ⁻⁶
-40	5.72×10 ⁻⁶
-120	5.09×10 ⁻⁶
-200	4.30×10 ⁻⁶
-280	3.33×10 ⁻⁶
-340	2.45×10 ⁻⁶

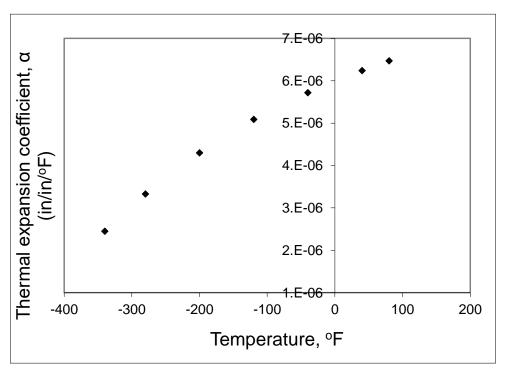


Figure. Data points for thermal expansion coefficient vs temperature.

We want to fit the data to the polynomial regression model

$$\alpha = a_0 + a_1 T + a_2 T^2$$

The coefficients a_0, a_1, a_2 are found by differentiating the sum of the square of the residuals with respect to each variable and setting the values equal to zero to obtain

$$\begin{bmatrix} n & \left(\sum_{i=1}^{n} T_i\right) & \left(\sum_{i=1}^{n} T_i^2\right) \\ \left(\sum_{i=1}^{n} T_i\right) & \left(\sum_{i=1}^{n} T_i^3\right) & \left(\sum_{i=1}^{n} T_i^3\right) \\ \left(\sum_{i=1}^{n} T_i^2\right) & \left(\sum_{i=1}^{n} T_i^3\right) & \left(\sum_{i=1}^{n} T_i^4\right) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} \alpha_i \\ \sum_{i=1}^{n} T_i & \alpha_i \\ \sum_{i=1}^{n} T_i^2 & \alpha_i \end{bmatrix}$$

Table 5 Summations for calculating constants of model

i	T(°F)	α (in/in/°F)	T^2	T^3	T^4	$T \times \alpha$	$T^2 \times \alpha$
1	80	6.4700×10 ⁻⁶	6.4000×10 ³	5.1200×10 ⁵	4.0960×10 ⁷	5.1760×10 ⁻⁴	4.1408×10 ⁻²
2	40	6.2400×10 ⁻⁶	1.6000×10 ³	6.4000×10 ⁴	2.5600×10 ⁶	2.4960×10 ⁻⁴	9.9840×10^{-3}
	40	5.7200×10 ⁻⁶		6.4000×10	2.5600×10 ⁶	-2.2880×10^{-4}	9.1520×10^{-3}
3	-40	3.7200×10	1.6000×10^3	-6.4000×10^4	2.0726108	-6.1080×10^{-4}	7.2206 10-2
4	-120	5.0900×10^{-6}	1.4400×10^4	-1.7280×10^6	2.0736×10 ⁸		7.3296×10 ⁻²
5	-200	4.3000×10 ⁻⁶	4.0000×10 ⁴	-8.0000×10^6	1.6000×10 ⁹	-8.6000×10^{-4}	1.7200×10^{-1}
6	-280	3.3300×10 ⁻⁶	7.8400×10 ⁴	-2.1952×10^{7}	6.1466×10 ⁹	-9.3240×10^{-4}	2.6107×10^{-1}
7	-340	2.4500×10 ⁻⁶	1.1560×10 ⁵	-3.9304×10^{7}	1.3363×10 ¹⁰	-8.3300×10^{-4}	2.8322×10 ⁻¹
$\sum_{i=1}^{7}$	-8.6000×10^{2}	3.3600×10 ⁻⁵	2.5800×10 ⁵	-7.0472×10^{7}	2.1363×10 ¹⁰	-2.6978×10^{-3}	8.5013×10 ⁻¹

$$\sum_{i=1}^{7} T_i^2 = 2.5580 \times 10^5$$

$$\sum_{i=1}^{7} T_i^3 = -7.0472 \times 10^7$$

$$\sum_{i=1}^{7} T_i^4 = 2.1363 \times 10^{10}$$

$$\sum_{i=1}^{7} \alpha_i = 3.3600 \times 10^{-5}$$

$$\sum_{i=1}^{7} T_i \alpha_i = -2.6978 \times 10^{-3}$$

$$\sum_{i=1}^{7} T_i^2 \alpha_i = 8.5013 \times 10^{-1}$$

Using these summations, we can now calculate a_0, a_1, a_2

$$\begin{bmatrix} 7.0000 & -8.6000 \times 10^{2} & 2.5800 \times 10^{5} \\ -8.600 \times 10^{2} & 2.5800 \times 10^{5} & -7.0472 \times 10^{7} \\ 2.5800 \times 10^{5} & -7.0472 \times 10^{7} & 2.1363 \times 10^{10} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 3.3600 \times 10^{-5} \\ -2.6978 \times 10^{-3} \\ 8.5013 \times 10^{-1} \end{bmatrix}$$

Solving the above system of simultaneous linear equations we have

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 6.0217 \times 10^{-6} \\ 6.2782 \times 10^{-9} \\ -1.2218 \times 10^{-11} \end{bmatrix}$$

The polynomial regression model is then

$$\alpha = a_0 + a_1 T + a_2 T^2$$

$$= 6.0217 \times 10^{-6} + 6.2782 \times 10^{-9} \,\mathrm{T} - 1.2218 \times 10^{-11} \,\mathrm{T}^2$$

NEXT LECTURE Numerical Differentiation