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Given n data points (𝑥1, 𝑦1), (𝑥2, 𝑦2),  ... , (𝑥𝑛, 𝑦𝑛) best fit 𝑦 = 𝑓(𝑥)

to the data, where 𝑓(𝑥) is a nonlinear function of 𝑥 .

Figure. Nonlinear regression model for discrete y vs. x 
data
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7.2 Nonlinear Regression



(𝑦 = 𝑎𝑒𝑏𝑥)

(𝑦 = 𝑎𝑥𝑏)

𝑦 =
𝑎𝑥

𝑏 + 𝑥

Some popular nonlinear regression models:

1. Exponential model:

2. Power model:

3. Saturation growth model:

4. Polynomial model: (𝑦 = 𝑎0 + 𝑎1𝑥+. . . +𝑎𝑛𝑥𝑛)



Exponential Model

Figure. Exponential model of nonlinear regression 
for y vs. x data



Finding Constants of Exponential Model
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To find the constants a and b of the 

exponential model, we minimize Sr by 
differentiating with respect to a and b and 

equating the resulting equations to zero.
Rewriting the equations, we obtain
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Solving the first equation for a yields



Substituting a back into the previous equation
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The constant b can be found through numerical methods such as bisection method or

the secant method.



Example 1-Exponential Model

t(hrs) 0 1 3 5 7 9

1.000 0.891 0.708 0.562 0.447 0.355
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Many patients get concerned when a test involves injection of a radioactive material.  For 

example for scanning a gallbladder, a few drops of Technetium-99m isotope is used.  Half 

of the Technetium-99m would be gone in about 6 hours.  It, however, takes about 24 hours 

for the radiation levels to reach what we are exposed to in day-to-day activities.  Below is 

given the relative intensity of radiation as a function of time.

Table. Relative intensity of radiation as a function of time. 


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Find: 

a) The value of the regression constants A and

b) The half-life of Technetium-99m

c) Radiation intensity after 24 hours

The relative intensity is related to time by the equation
tAe =

Plot of data



Equation above can be solved for λ using bisection method. To estimate the initial guesses, 

we assume λ = −0.120  and λ = −0.110 . We need to check whether these values first bracket 

the root of f (λ) = 0 . At λ = −0.120 , the table below shows the evaluation of f (− 0.120).
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(At λ = −0.110 )







This result implies that only

%317.6100
9998.0

10316.6 2

=
 −

radioactive intensity is left after 24 hours.



Polynomial Model

Figure. Polynomial model for nonlinear regression of y vs. x data
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Temperature, T (oF) Coefficient of thermal 

expansion, α 

(in/in/oF)

80 6.47×10−6

40 6.24×10−6

−40 5.72×10−6

−120 5.09×10−6

−200 4.30×10−6

−280 3.33×10−6

−340 2.45×10−6

Table. The thermal expansion coefficient at given 

different temperatures

Regress (fit) the thermal expansion coefficient vs. temperature data to a second order polynomial.
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Figure. Data points for thermal expansion coefficient vs 
temperature. 
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210 TaTaaα ++=We want to fit the data to the polynomial regression model

The coefficients 210  , a,aa are found by differentiating the sum of the square of the

residuals with respect to each variable and setting the values equal to zero to obtain
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Using these summations, we can now calculate 210  , a,aa

Solving the above system of simultaneous linear equations 
we have
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The polynomial regression model is then
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NEXT LECTURE
Numerical Differentiation
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