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9.1. MOTIVATION

Calculus Is the mathematics of change. Because engineers must continuously deal
with systems and processes that change, calculus is an essential tool of our profession.
Standing at the heart of calculus are the related mathematical concepts of

differentiation and integration.

Mathematically, the derivative, which serves as the fundamental vehicle for

differentiation, represents the rate of change of a dependent variable with

respect to an independent variable.
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As depicted in Figure, the mathematical definition of the derivative begins with a difference

approximation:
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where Yy and f(X) are alternative representatives for the dependent variable and X is the independent

variable.
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If x 1s allowed to approach zero, as occurs in moving from Figure a to C, the difference becomes a

derivati
erivative dy _ . S+ Ax) — fle) L for + Ax) — f(x)

where dy/dx [which can also be designated as Yy or f '(X;)] is the first derivative of y with respect to x

evaluated at X;.

As seen in the visual depiction of Figure C, the derivative is the slope of the tangent to the curve at X;.
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Thus, the second derivative tells us how fast the slope is changing. It is commonly referred to as the curvature,
because a high value for the second derivative means high curvature.

Partial Derivatives

 Finally, partial derivatives are used for functions that depend on more than one variable.

 Partial derivatives can be thought of as taking the derivative of the function at a point with all but one variable
held constant. For example, given a function f that depends on both X and y, the partial derivative of f with
respect to X at an arbitrary point (X, Y) 1s defined as

% — lim f(x—l—Ax,y)—f(x,y)
ax  Ax—0 Ax

 Similarly, the partial derivative of f with respect to y is defined as:
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The function to be differentiated or integrated will typically be in one of the following three forms:

1. A simple continuous function such as a polynomial, an exponential, or a trigonometric function.

2. A complicated continuous function that is difficult or impossible to differentiate or integrate
directly.

3. A tabulated function where values of X and f(X) are given at a number of discrete points, as is often

the case with experimental or field data.



9.2. MATHEMATICAL BACKGROUND

* General rules are available for derivative of a function. For example, in the case of the monomial
y=x"
the following simple rule applies (7 % 0):

dy _ n—1
— = nNX
dx

which is the expression of the more general rule for

y=u"

where # = a function of x. For this equation, the derivative is computed via

dy a1 du
dx " dx



Two other useful formulas apply to the products and quotients of functions. For example,

if the product of two functions of x(# and v) is represented as y = uv, then the derivative
can be computed as

d d d
_yzu_v_l_v_u

dx dx dx

For the division, y = u/v, the derivative can be computed as

du dv
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Other useful formulas are summarized in Table

Table Some commonly used derivatives.
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9.3. NUMERICAL DIFFERENTIATION

* As previously mentioned, a number of engineering problems require a numerically derived estimate
of a derivative of a function f(x), with two general approaches to the problem.

 First, if the function i1s known but the derivative cannot be computed analytically, the derivative can
be estimated by computing the function for two values of the independent variable(s) separated by

distance Ax and dividing the difference by Ax as follows:

dy . SO+ Ax) — flxr) _ flg + Ax) — flxg) Forward Difference
dx  Ax—0 Ax Ax Equation




The second approach to numerical differentiation 1s to fit a function to a set of points that
describes the relationship between the dependent and independent variables and then
differentiate the fitted function.

Specifically, an interpolation polynomial of order n could be fit to the data and the derivative
of the polynomial used as the estimate of the derivative.

The selection of one of the two methods depends on the form in which the data are presented

and the desired level of accuracy.



0.3.1. Finite-Difference Differentiation
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Example

A design engineer must make estimates of TABLE7.1 Saturation Vapor
evaporation rates when the amount of water needed to Pressure (e,)in mm Hg as a
meet irrigation demands is required. One input to a Function of Temperature (T) in °C
frequently used formula for estimating evaporation rates rec) e, (mm Hg)
Is the slope of the saturation vapor pressure curve at air ;? 1;22
temperature T. A small part of the table that is used to 22 19.82
make such estimates is given in Table. 23 21.05
o _ _ 24 22.37
If it is necessary to make design estimates at a 75 2375

temperature of 22 °C, then the slope of the saturation
vapor pressure curve at 22 °C could be estimated using,

as follows, the forward, backward, or two-step method:



Solution (Forward Difference Equation)

Saturation Vapor Pressure (g) TABLE 7.1 Saturation Vapor
Pressure (e,)inmm Hg as a
e, (23) Function of Temperature (7) in °C
e. (22) T(°C) e, (mm Hg)
AX 20 17.53
» Temperature (T) 21 18.65
2223 22 19.82
23 21.05
24 22.37
af(x) _ flx+Ax)— f(x) 25 2375
dx Ax
de, e,(23)—e,(22) 21.05-19.82

=1.23 mm Hg/°C

ar 23-22



Solution (Backward Difference )Equation

Saturation Vapor Pressure (€) TABLE 7.1 Saturation Vapor
[ Pressure (e,)inmm Hg as a
Function of Temperature (7) in °C

e. (22)

e. (21) T(°C) e, (mm Hg)

T 20 17.53

» Temperature (T) 2] 1865

21 22 22 19.82

23 21.05

24 22.37

df(x) _ f(x)— flx—Ax) 25 23.75

des _ €, (22) — € (21) — 19.82-18.65 =1.17 mm Hg/oc
dT 22-21 1




Solution (Two-step Method)

Saturation Vapor Pressure (€) TABLE 7.1 Saturation Vapor
e, (23) Pressure (e,)inmm Hg as a

e, (22) Function of Temperature (7) in °C
T(°C) e, (mm Hg)

e, (21) /4 i 20 17.53

21 18.65

» Temperature (T)

21 22 23 22 19.82

23 21.05

24 22.37

df(x)  flx+Ax)— f(x—Ax) 25 2375

dx 2Ax

de; _e,(23)—e,(21) 21.05-18.65 _ 120 mm Hg/°C  The true value is 1.20 mm Hg/°C, so the two-step

aT 23-21 2 method provided the most accurate estimate.




9.3.2. Differentiation Using Taylor Series Expansion

2 2 3 3
The forward Taylor series expansion can be written as  f(x+Ax)= f{xj+—éf;xx} Ax+ 4;5] ':‘J}';:' + '“J'r;:;:' ':‘5;:' +

Truncated this result by excluding the second- and higher-derivative terms and were thus left with a final
result of

df(x)_ flx+An)— f(x)
ax Ax

The equation above represents first-order approximation of the first derivative of f(x). We can also derive the
second-order approximation of f(x) by including higher order terms in Taylor’s expansion.

df (x) - flx+Ax)— f(x) df “(x) Ax Second-order approximation of
dx Ax dx’ 2! the first derivative

The second-order approximation requires knowledge of the second derivative of f(x).



The finite-difference approximation can also be used to compute higher order derivatives. For example, 1f we
let /'(x) be the first derivative of f (x) with respect to x, then the forward difference approximation of the

second derivative 1s given by

d” f(x) _ f(x+Ax)- f(x)

—

dx’ Ax

Substituting the first-order approximation of f '(x) in the equation above produces the following equation for
the second order derivative:

d’ f(x) _ f(x+2Ax%)=2 f(x+Ax)+ f(x) | First-order approximation of the
dx? - (A x)z second derivative

df(x) —f(x+2Ax)+4 f(x+Ax)—3 f(x) | Second-order approximation of
d(x) B 2 Ax the first derivative




Similarly, the first-order estimate of the second derivative can be revised by including a second-order term
from the Taylor series expansion to obtain its second-order approximation as

d’ f(x) = f(x+3Ax)+4 f(x+2Ax)—5 f(x+Ax)+2 f(x) Second-order approximation of
Al (Ax)> the second derivative

Using backward difference in the Taylor series expansion, the following first- and second-order estimates,
respectively, for the first derivative of /' (x) can be obtained:

df(x) _ flx)~ flax—Ax)
dx Ax

df (%) _ 3 f(x)=4f(x—Ax)+ fx—2Ax)
dx 2Ax



Using backward difference in the Taylor series expansion, the following first- and second-order estimates,
respectively, for the second derivative of f(x) can be obtained:

d’fx) _ f(x)=2f(x—Ax)+ f(ax—2Ax)
P (M)E

df(x) _ 2 f(2)=5f(a—Ax)+4 f(x—2A%)— flx—3Ax)
A (Ax)’

Using the two-step method in the Taylor series expansion, the following first- and second-order estimates,
respectively, for the first derivative of f(x) can be obtained:

df(x)  flx+Ax)— f(x—Ax)
dx 2Ax

df(x) _ = f(x+20%)+8 f(x+Ax) =8 f(x— Ax) + flx—2Ax)
dx 12Ax




Using the two-step method in the Taylor series expansion, the following first- and second-order estimates,
respectively, for the second derivative of f(x) can be obtained:

d’f(x)  flx+0x)=2f(x)+ fx—Ax)

dx’ (Ax)

d’ f(x) _—f(x+2A%)+16 f(x+Ax) =30 f(x) =16 f(x — Ax) - f(x —2Ax)
x> 12(Ax)*




Example

TABLE 7.1

Saturation Vapor
Pressure (e))inmmHgasa

Forward Difference Method

Saturation Vapor Pressure (e)

Function of Temperature (T) in °C A
T“C) &, (mm Hg)
20 17.53 e, (23)
21 18,65
22 19,82 e; (22)
23 21.05
24 2237 AX
25 2375
22 23
(7.33) af(x) _—flx+2Ax)+4 f(x+Ax)—3 f(x)
' dl x) 2Ax
df(x) —e(24)+4e, (23)-3e,(22)
dx 2(1)
(7.43)

==

—22.37+ 4(21.05)— 3(19.82)

2(1)

= 1.185 mm Hg/*C

» Temperature (T)



TABLE 7.1

Saturation Vapor

Pressure (e))inmmHgasa
Function of Temperature (T) in °C

e. (22)
e. (21)

Backward Difference Method

Saturation Vapor Pressure (e)

A

AX

21

d(x) _ 3f(x)=4f(— M)+ flx—24%)

2Ax

T"C) &, (mm Hg)

20 1753

21 18.65

22 19.82

23 21.05

24 2237

25 2375
7.36

df(x) 3e(22)—4e (21)+e,(20)
dx 2(1)

(7.44)

_ 3(19.82)- 4(18.65)+17.53

2(1)

22

=1.195 mm Hg/°C

» Temperature (T)



TABLE 7.1 Saturation Vapor
Pressure (e))inmmHgasa
Function of Temperature (T) in °C

Two-step Method

Saturation Vapor Pressure (e)

A

A 4

/Aﬁ

A

AX

AX

21

22

TI°C) e,(mmHg) € (23)
20 17.53
21 1865 & (22)
22 19.82
23 21.05 e, (21)
24 2237
25 2375
(7.40) daf(x) _ — f(x+2Ax)+8 f(x+ Ax)— 8 f(x — Ax)+ fx—2Ax)
' 12Ax%
df (x) _ —e,(24)+8e,(23)— 8e,(21) +e,(20)
dx 12(1)

—(22.37)+8(21.05) — 8(18.65)+(17.53)

12(1)

= 1.19667 mm Hg/°C

» Temperature (T)
23

The accuracy of the three methods is improved by
using the second-order approximation. The two-step
method still provides the best estimate, since the true
value at T =22°Cis 1.2 mm Hg/°C.



NEXT WEEK
NUMERICAL INTEGRATION
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