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9.1. MOTIVATION

Calculus is the mathematics of change. Because engineers must continuously deal

with systems and processes that change, calculus is an essential tool of our profession.

Standing at the heart of calculus are the related mathematical concepts of

differentiation and integration.

Mathematically, the derivative, which serves as the fundamental vehicle for

differentiation, represents the rate of change of a dependent variable with

respect to an independent variable.



As depicted in Figure, the mathematical definition of the derivative begins with a difference

approximation:

where y and f(x) are alternative representatives for the dependent variable and x is the independent

variable.



If x is allowed to approach zero, as occurs in moving from Figure a to c, the difference becomes a

derivative

where dy/dx [which can also be designated as y′ or f ′(xi)] is the first derivative of y with respect to x

evaluated at xi.

As seen in the visual depiction of Figure c, the derivative is the slope of the tangent to the curve at xi.

≈



The second derivative represents the derivative of the first derivative, 

Thus, the second derivative tells us how fast the slope is changing. It is commonly referred to as the curvature,

because a high value for the second derivative means high curvature.

• Finally, partial derivatives are used for functions that depend on more than one variable.

• Partial derivatives can be thought of as taking the derivative of the function at a point with all but one variable

held constant. For example, given a function f that depends on both x and y, the partial derivative of f with

respect to x at an arbitrary point (x, y) is defined as

Partial Derivatives 

• Similarly, the partial derivative of f with respect to y is defined as:



The function to be differentiated or integrated will typically be in one of the following three forms:

1. A simple continuous function such as a polynomial, an exponential, or a trigonometric function.

2. A complicated continuous function that is difficult or impossible to differentiate or integrate

directly.

3. A tabulated function where values of x and f(x) are given at a number of discrete points, as is often

the case with experimental or field data.



9.2. MATHEMATICAL BACKGROUND

• General rules are available for derivative of a function. For example, in the case of the monomial







9.3. NUMERICAL DIFFERENTIATION

• As previously mentioned, a number of engineering problems require a numerically derived estimate

of a derivative of a function f(x), with two general approaches to the problem.

• First, if the function is known but the derivative cannot be computed analytically, the derivative can

be estimated by computing the function for two values of the independent variable(s) separated by

distance Δx and dividing the difference by Δx as follows:

≈ Forward Difference 
Equation



• The second approach to numerical differentiation is to fit a function to a set of points that

describes the relationship between the dependent and independent variables and then

differentiate the fitted function.

• Specifically, an interpolation polynomial of order n could be fit to the data and the derivative

of the polynomial used as the estimate of the derivative.

• The selection of one of the two methods depends on the form in which the data are presented

and the desired level of accuracy.



9.3.1. Finite-Difference Differentiation
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Example

      A design engineer must make estimates of

evaporation rates when the amount of water needed to

meet irrigation demands is required. One input to a

frequently used formula for estimating evaporation rates

is the slope of the saturation vapor pressure curve at air

temperature T. A small part of the table that is used to

make such estimates is given in Table.

If it is necessary to make design estimates at a

temperature of 22 °C, then the slope of the saturation

vapor pressure curve at 22 °C could be estimated using,

as follows, the forward, backward, or two-step method:



Solution (Forward Difference Equation)

Saturation Vapor Pressure (e) 

Temperature (T) 
22 23

es (23)

es (22)

ΔX



Solution (Backward Difference )Equation

Saturation Vapor Pressure (e) 

Temperature (T) 
21 22

es (22)

es (21)

ΔX



Solution (Two-step Method)

21 22 23

Saturation Vapor Pressure (e) 

Temperature (T) 

es (21)

es (22)

es (23)

ΔXΔX

The true value is 1.20 mm Hg/°C, so the two-step

method provided the most accurate estimate.



9.3.2. Differentiation Using Taylor Series Expansion

The forward Taylor series expansion can be written as

Truncated this result by excluding the second- and higher-derivative terms and were thus left with a final 

result of

The equation above represents first-order approximation of the first derivative of f(x). We can also derive the 

second-order approximation of f(x) by including higher order terms in Taylor’s expansion.

The second-order approximation requires knowledge of the second derivative of f (x).

Second-order approximation of 

the first derivative 



The finite-difference approximation can also be used to compute higher order derivatives. For example, if we

let f '(x) be the first derivative of f (x) with respect to x, then the forward difference approximation of the

second derivative is given by

Substituting the first-order approximation of f '(x) in the equation above produces the following equation for 

the second order derivative:

First-order approximation of the 

second derivative 

Second-order approximation of 

the first derivative 



Similarly, the first-order estimate of the second derivative can be revised by including a second-order term

from the Taylor series expansion to obtain its second-order approximation as

Using backward difference in the Taylor series expansion, the following first- and second-order estimates,

respectively, for the first derivative of f (x) can be obtained:

Second-order approximation of 

the second derivative 



Using backward difference in the Taylor series expansion, the following first- and second-order estimates,

respectively, for the second derivative of f(x) can be obtained:

Using the two-step method in the Taylor series expansion, the following first- and second-order estimates,

respectively, for the first derivative of f(x) can be obtained:



Using the two-step method in the Taylor series expansion, the following first- and second-order estimates,

respectively, for the second derivative of f(x) can be obtained:



Example

Forward Difference Method

Saturation Vapor Pressure (e) 

Temperature (T) 
22 23

es (23)

ΔX

es (22)



Backward Difference Method

Saturation Vapor Pressure (e) 

Temperature (T) 
21 22

es (22)

es (21)

ΔX



Two-step Method

21 22 23

Saturation Vapor Pressure (e) 

Temperature (T) 

es (21)

es (22)

es (23)

ΔXΔX

The accuracy of the three methods is improved by

using the second-order approximation. The two-step

method still provides the best estimate, since the true

value at T = 22°C is 1.2 mm Hg/°C.



NEXT WEEK
NUMERICAL INTEGRATION
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