## ME 209 Numerical Methods

Lecture 5
Solutions of Linear Equation Systems

#### 4.1 INTRODUCTION

In previous lecture, we determined the value x that satisfied a single equation, f(x) = 0. Now, we deal with the case of determining the values  $x_1, x_2, \ldots, x_n$  that simultaneously satisfy a set of equations

$$f_1(x_1, x_2, \dots, x_n) = 0$$

$$f_2(x_1, x_2, \dots, x_n) = 0$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$f_n(x_1, x_2, \dots, x_n) = 0$$

$$\vdots$$

• Such systems can be either *linear* or *nonlinear*. In this section, we deal with *linear algebraic equations* that are of the general form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

where the a's are constant coefficients, the b's are constants, and n is the number of equations.

The system of linear equations given can be represented in matrix form:

$$[A]\{x\} = \{b\}$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

 $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$ 

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$ 

where 
$$[A]$$
 is  $n \times n$  Coefficient matrix  $\{x\}$  is  $n \times 1$  Unknown vector  $\{b\}$  is  $n \times 1$  Right-hand side (RHS) vector

In this lecture, numerical methods used in solving sets of linear equations will be discussed.

### Introduction

- Many engineering and scientific problems can be formulated in terms of systems of simultaneous linear equations.
- When these systems consist of only a few equations, a solution can be found analytically using the standard methods from algebra, such as substitution.
- However, complex problems may involve a large number of equations that cannot realistically be solved using analytical methods.
- In these cases, we will need to find the solution numerically using computers.

## **Example: Material Purchasing for Manufacturing**

- Let us assume that a manufacturer is marketing a product made of an alloy material meeting a certain specified composition.
- The three critical ingredients of the alloy are manganese, silicon, and copper. The specifications require 15 pounds of manganese, 22 pounds of silicon, and 39 pounds of copper for each ton of alloy to be produced.
- This mix of ingredients requires the manufacturer to obtain inputs from three different mining suppliers.
- Ore from the different suppliers has different concentrations of the alloy ingredients, as detailed in Table.
- Given this information, the manufacturer must determine the quantity of ore to purchase from each supplier so that the alloy ingredients are not wasted.

### Solution

# TABLE 5.1 Concentration of Alloy Ingredients for Three Suppliers

|           | Supplier 1<br>(lb/ton of Ore) | Supplier 2<br>(lb/ton of Ore) | Supplier 3<br>(lb/ton of Ore) |
|-----------|-------------------------------|-------------------------------|-------------------------------|
| Manganese | 1                             | 3                             | 2                             |
| Silicon   | 2                             | 4                             | 3                             |
| Copper    | 3                             | 4                             | 7                             |

 $X_j$  = amount of ore purchased from supplier j

 $C_i$  = amount of ingredient i required per ton of alloy

 $a_{ij}$  = amount of ingredient i contained in each ton of ore shipped from supplier j

Using these notations, we can formulate a general equation that defines

- (1) the relationships among the compositions of the ore shipped by the different suppliers,
- (2) the amount of ore needed from each supplier, and
- (3) the required composition of the final alloy as

$$\sum_{i=1}^{n} a_{ij} X_{j} = C_{i} \quad \text{for } i = 1, 2, ..., m$$

in which m is the number of ingredients and n in which m is the number of ingredients and n  $\sum_{i=1}^{n} a_{ij} X_j = C_i \qquad \text{for } i = 1, 2, ..., m$ is the number of suppliers. For the case under consideration, both m and n equal 3. consideration, both *m* and *n* equal 3.

$$X_1 + 3X_2 + 2X_3 = 15$$

$$2X_1 + 4X_2 + 3X_3 = 22$$

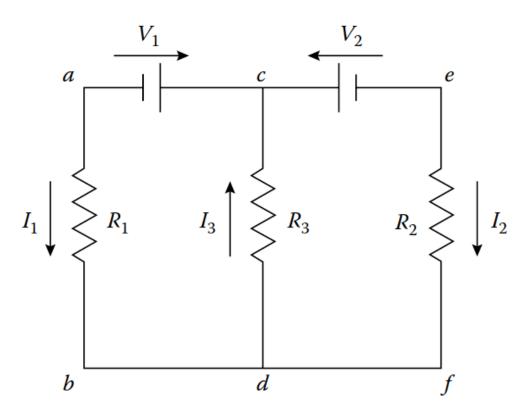
$$3X_1 + 4X_2 + 7X_3 = 39$$

## **Example 2: Electrical Circuit Analysis**

Current flows in circuits are governed by Kirchhoff's laws.

- Kirchhoff's first law states that the algebraic sum of the currents flowing into a junction of a circuit must equal zero.
- Kirchhoff's second law states that the algebraic sum of the electromotive forces around a closed circuit must equal the sum of the voltage drops around the circuit, where a voltage drop equals the product of the current and the resistance.

## **Example 2: Electrical Circuit Analysis**



Applying Kirchhoff's first law at junction *c* 

$$I_1 + I_2 - I_3 = 0$$

Applying Kirchhoff's second law to network loop *acdb* 

$$V_1 = R_1 I_1 + R_3 I_3$$

Applying Kirchhoff's second law to network loop *aefb* 

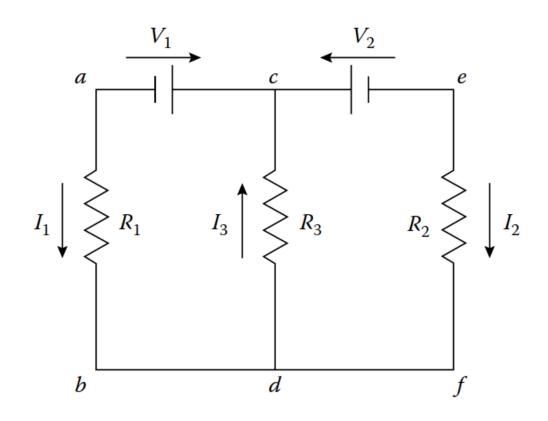
$$V_1 - V_2 = R_1 I_1 - R_2 I_2$$

#### Assume that $R_1 = 2$ , $R_2 = 4$ , $R_3 = 5$ , $V_1 = 6$ , and $V_2 = 2$

$$I_1 + I_2 - I_3 = 0$$

$$2I_1 + 5I_3 = 6$$

$$2I_1 - 4I_2 = 4$$



## General Form For A System of Equations

$$a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n = C_1$$
  
 $a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n = C_2$   
 $\vdots$ 

$$a_{n1}X_1 + a_{n2}X_2 + \dots + a_{nn}X_n = C_n$$

in which the  $a_{ij}$  terms are the **known** coefficients of the equations, the  $X_j$  terms are the **unknown variables**, and the  $C_i$  terms are the **known** constants.

Since values for both the  $a_{ij}$  and  $C_i$  terms will be known for any problem, the system of equations represents n linear equations with n unknowns.

## Iterative Equation-Solving Methods

- Linear equations can be solved by
  - Direct equation-solving methods like the Gaussian elimination method
    - the solution is found after a fixed, predictable number of operations
  - A trial-and-error procedure or iterative methods.
    - the number of operations required to obtain a solution is not fixed
    - a major advantage of iterative methods is that they can be used to solve nonlinear simultaneous equations, a task that is not possible using direct elimination methods

#### Two of the most common methods,

- The Jacobi and
- Gauss
   – Seidel procedures

### Jacobi Iteration

Idea:

for a single linear equation with a single ax = b unknown, it is straightforward to solve for the unknown

what if:  $a_{11}x_1 + a_{12}x_2 = b_1$  solve eq 1 for  $x_1$   $x_1 = \frac{1}{a_{11}}(b_1 - a_{12}x_2)$ 

$$a_{21}x_1 + a_{22}x_2 = b_2$$
 solve eq 2 for  $x_2$   $x_2 = \frac{1}{a_{22}}(b_2 - a_{21}x_1)$ 

But, we need values for  $x_1$  and  $x_2$  on the right-hand-side...

### Jacobi Iteration

What if we start with **guesses** for those values, call those

guesses:  $x_1^0$  and  $x_2^0$ 

$$x_1 = \frac{1}{a_{11}} (b_1 - a_{12} x_2^0)$$
  $x_2 = \frac{1}{a_{22}} (b_2 - a_{21} x_1^0)$ 

The equations above act as an "update" or "correction" to the guesses. To make things clearer, rename the updates to:  $x_1^1$  and  $x_2^1$ 

$$x_1^1 = \frac{1}{a_{11}} \left( b_1 - a_{12} x_2^0 \right) \qquad \qquad x_2^1 = \frac{1}{a_{22}} \left( b_2 - a_{21} x_1^0 \right)$$

Now repeat!

### Jacobi Iteration

$$x_1^1 = \frac{1}{a_{11}} \left( b_1 - a_{12} x_2^0 \right)$$

$$x_2^1 = \frac{1}{a_{22}} \left( b_2 - a_{21} x_1^0 \right)$$

Now repeat!

$$x_1^2 = \frac{1}{a_{11}} \left( b_1 - a_{12} x_2^1 \right)$$

$$x_2^2 = \frac{1}{a_{22}} \left( b_2 - a_{21} x_1^1 \right)$$

$$x_1^3 = \frac{1}{a_{11}}(b_1 - a_{12}x_2^2)$$

$$x_2^3 = \frac{1}{a_{22}}(b_2 - a_{21}x_1^2)$$

k is an iteration counter

$$x_1^{k+1} = \frac{1}{a_{11}} \left( b_1 - a_{12} x_2^k \right)$$

$$x_2^{k+1} = \frac{1}{a_{22}} \left( b_2 - a_{21} x_1^k \right)$$

### Jacobi Iteration Generalization

#### **Example: 3 linear equations**

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$\begin{aligned} x_1^{k+1} &= \frac{1}{a_{11}}(b_1 - a_{12}x_2^k - a_{13}x_3^k) & \longrightarrow x_1^{k+1} &= x_1^k + \frac{1}{a_{11}}(b_1 - a_{11}x_1^k - a_{12}x_2^k - a_{13}x_3^k) \\ x_2^{k+1} &= \frac{1}{a_{22}}(b_2 - a_{21}x_1^k - a_{23}x_3^k) & \longrightarrow x_2^{k+1} &= x_2^k + \frac{1}{a_{22}}(b_2 - a_{21}x_1^k - a_{22}x_2^k - a_{23}x_3^k) \\ x_3^{k+1} &= \frac{1}{a_{33}}(b_3 - a_{31}x_1^k - a_{32}x_2^k) & \longrightarrow x_3^{k+1} &= x_3^k + \frac{1}{a_{33}}(b_2 - a_{31}x_1^k - a_{32}x_2^k - a_{33}x_3^k) \end{aligned}$$

### Jacobi Iteration Generalization

In general, for an  $n \times n$  system

$$x_i^{k+1} = x_i^k + \frac{1}{a_{ii}} \left( b_i - \sum_{j=1}^n a_{ij} x_j^k \right)$$

### Jacobi Iteration Generalization

#### **Jacobi Algorithm:**

- 1. Guess  $x_i$
- 2.Update guess for each  $x_i$ , starting with i = 0 according to

$$x_i^{k+1} = x_i^k + \frac{1}{a_{ii}} \left( b_i - \sum_{j=1}^n a_{ij} x_j^k \right)$$

3. Repeat step 2 until iteration count has been reached

or

The acceptable difference is set by the user and influenced by the need for accuracy.

## **Example: Jacobi Iteration**

Given the following set of equations, solve for values of the unknowns using Jacobi iteration:

$$3X_1 + X_2 - 2X_3 = 9$$

$$-X_1 + 4X_2 - 3X_3 = -8$$

$$X_1 - X_2 + 4X_3 = 1$$

## Solution

$$X_1 = \frac{9 - X_2 + 2X_3}{3}$$

$$X_2 = \frac{-8 + X_1 + 3X_3}{4}$$

$$X_3 = \frac{1 - X_1 + X_2}{4}$$

values of  $X_1 = X_2 = X_3 = 1$  for this initial estimate are assumed.

$$X_1 = \frac{9 - 1 + 2(1)}{3} = \frac{10}{3}$$

$$X_2 = \frac{-8+1+3(1)}{4} = -1$$

$$X_3 = \frac{1 - 1 + 1}{4} = \frac{1}{4}$$

These new values for  $X_1$ ,  $X_2$ , and  $X_3$  are then used as the new solution estimate.

$$X_1 = \frac{9 - (-1) + 2\left(\frac{1}{4}\right)}{3} = \frac{7}{2}$$

$$X_2 = \frac{-8 + \frac{10}{3} + 3\left(\frac{1}{4}\right)}{4} = -\frac{47}{48}$$

This process is repeated until the differences between the previous values and the new values are small.

$$X_3 = \frac{1 - \frac{10}{3} + (-1)}{4} = -\frac{5}{6}$$

| Iteration | <i>X</i> <sub>1</sub> | $ \Delta X_1 $ | $X_2$  | $ \Delta X_2 $ | <b>X</b> <sub>3</sub> | $ \Delta X_3 $ |
|-----------|-----------------------|----------------|--------|----------------|-----------------------|----------------|
| 0         | 1                     | _              | 1      | _              | 1                     | _              |
| 1         | 3.333                 | 2.333          | -1.000 | 2.000          | 0.250                 | 0.750          |
| 2         | 3.500                 | 0.167          | -0.979 | 0.021          | -0.833                | 1.083          |
| 3         | 2.771                 | 0.729          | -1.750 | 0.771          | -0.870                | 0.036          |
| 4         | 3.003                 | 0.233          | -1.960 | 0.210          | -0.880                | 0.010          |
| 5         | 3.066                 | 0.063          | -1.909 | 0.050          | -0.991                | 0.111          |
| 6         | 2.976                 | 0.090          | -1.976 | 0.067          | -0.994                | 0.003          |
| 7         | 2.996                 | 0.020          | -2.001 | 0.025          | -0.988                | 0.006          |
| 8         | 3.008                 | 0.012          | -1.992 | 0.009          | -0.999                | 0.011          |
| 9         | 2.998                 | 0.011          | -1.997 | 0.005          | -1.000                | 0.001          |
| 10        | 2.999                 | 0.001          | -2.001 | 0.003          | -0.999                | 0.001          |
| 11        | 3.001                 | 0.002          | -1.999 | 0.001          | -1.000                | 0.001          |
| 12        | 3.000                 | 0.001          | -2.000 | 0.000          | -1.000                | 0.001          |

If a maximum absolute change of less than 0.05

Using a fixed number of iterations can be inefficient.

We need a way to tell the solver to stop the iterations.

## Convergence: When to Stop Iterating?

Successive calculations (iteration) continue until the tolerance value (TD) is satisfied

$$\left| x_i^{(k+1)} - x_i^{(k)} \right| \le TD \qquad (i = 1, 2, ..., n)$$

## Gauss-Seidel Iteration (Multi-Step Iteration )

It is quite similar to the Jacobi method.

• The only difference is; Substituting the calculated  $x_i$  value into the next equation.

<u>Idea:</u> Always use most recent information.

#### **Gauss-Seidel Algorithm**

- 1. Guess  $x_i$ .
- 2. Update guess for each  $x_i$ , starting with i=1. Use most recent information when calculating each  $x_i$ .

Gauss-Seidel Update: 
$$x_i = x_i + \frac{1}{a_{ii}} \left( b_i - \sum_{j=1}^n a_{ij} x_j \right)$$

3. Repeat step 2 until convergence is obtained.

## Example

**Solve:** the following system of equations by taking TD = 0.05

An initial solution estimate of  $X_1 = X_2 = X_3 = 1$ 

$$-X_1 + 4X_2 - 3X_3 = -8$$
  $X_1 = 8 + 4X_2 - 3X_3$ 

$$3X_1 + X_2 - 2X_3 = 9$$
  $X_2 = 9 - 3X_1 + 2X_3$ 

$$X_1 - X_2 + 4X_3 = 1$$
  $X_3 = \frac{1 - X_1 + X_2}{4}$ 

### Divergence of Gauss-Seidel Iteration

| Iteration | $X_1$ | $ \Delta X_1 $ | $X_2$  | $ \Delta X_2 $ | $X_3$   | $ \Delta X_3 $ |
|-----------|-------|----------------|--------|----------------|---------|----------------|
| 0         | 1     | _              | 1      | _              | 1       | _              |
| 1         | 9     | 8              | -16    | 17             | -6      | 7              |
| 2         | -38   | 47             | 111    | 127            | 37.5    | 43.5           |
| 3         | 339.5 | 377.5          | -934.5 | 1045.5         | -318.25 | 355.75         |
|           |       |                |        |                |         |                |

If we re-arrange equations like

$$-X_1 + 4X_2 - 3X_3 = -8$$

$$3X_1 + X_2 - 2X_3 = 9$$

$$-X_1 + 4X_2 - 3X_3 = -8$$

$$X_1 - X_2 + 4X_3 = 1$$
  $X_1 - X_2 + 4X_3 = 1$ 

#### The first iteration cycle

$$X_1 = \frac{9 - X_2 + 2X_3}{3}$$

$$X_2 = \frac{-8 + X_1 + 3X_3}{4}$$

$$X_3 = \frac{1 - X_1 + X_2}{4}$$

$$X_{1} = \frac{9 - 1 + 2(1)}{3} = 3.333$$

$$X_{2} = \frac{-8 + 3.333 + 3(1)}{4} = -0.417$$

$$X_{3} = \frac{1 - 3.333 + (-0.417)}{4} = -0.688$$

#### The second iteration cycle

$$X_1 = \frac{9 - (-0.417) + 2(-0.688)}{3} = 2.680$$

$$X_2 = \frac{-8 + 2.680 + 3(-0.688)}{4} = -1.845$$

$$X_3 = \frac{1 - 2.680 + (-1.845)}{4} = -0.882$$

| Iteration | $X_1$ | $ \Delta X_1 $ | $X_2$  | $ \Delta X_2 $ | $X_3$  | $ \Delta X_3 $ |
|-----------|-------|----------------|--------|----------------|--------|----------------|
| 0         | 1     | _              | 1      | _              | 1      | _              |
| 1         | 3.333 | 2.333          | -0.417 | 1.417          | -0.688 | 1.688          |
| 2         | 2.680 | 0.348          | -1.845 | 1.428          | -0.882 | 0.194          |
| 3         | 3.027 | 0.346          | -1.904 | 0.059          | -0.983 | 0.101          |
| 4         | 2.979 | 0.048          | -1.992 | 0.088          | -0.993 | 0.010          |
| 5         | 3.002 | 0.023          | -1.994 | 0.002          | -0.999 | 0.006          |
| 6         | 2.999 | 0.003          | -2.000 | 0.006          | -1.000 | 0.001          |
| 7         | 3.000 | 0.001          | -2.000 | 0.000          | -1.000 | 0.000          |
| 8         | 3.000 | 0.000          | -2.000 | 0.000          | -1.000 | 0.000          |
|           |       |                |        |                |        |                |

#### **PIVOTING**

• *Pivoting* is the displacement of rows in the coefficient matrix so that the diagonal elements are maximized in absolute value.

#### **Row Pivoting**

$$\begin{bmatrix} 0 & 1 & 3 \\ 0 & 2 & 1 \\ 4 & 1 & 2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$\begin{bmatrix} 4 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_3 \\ b_2 \\ b_1 \end{pmatrix}$$

#### Column Pivoting

$$\begin{bmatrix} 0 & 1 & 3 \\ 0 & 2 & 1 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_3 \\ x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$