
ME 209 Numerical Methods

Lecture 5
Solutions of Linear Equation Systems



4.1 INTRODUCTION

• In previous lecture, we determined the value x that satisfied a single equation, f (x) = 0. Now, we deal 

with the case of determining the values x1, x2, . . . , xn
 that simultaneously satisfy a set of equations

• Such systems can be either linear or nonlinear. In this section, we deal with linear algebraic equations 

that are of the general form 

(General set of equations)

where the a’s are constant 

coefficients, the b’s are 

constants, and n is the number 

of equations. 



• The system of linear equations given can be represented in matrix

form:

where 𝐴 is n x n Coefficient matrix

𝑥 is n x 1 Unknown vector

𝑏 is n x 1 Right-hand side (RHS) vector

𝐴 𝑥 = {𝑏}

• In this lecture, numerical methods used in solving sets of linear equations will be discussed.



Introduction

• Many engineering and scientific problems can be formulated in terms 
of systems of simultaneous linear equations. 

• When these systems consist of only a few equations, a solution can 
be found analytically using the standard methods from algebra, such 
as substitution. 

• However, complex problems may involve a large number of equations 
that cannot realistically be solved using analytical methods. 

• In these cases, we will need to find the solution numerically using 
computers.



Example: Material Purchasing for Manufacturing

• Let us assume that a manufacturer is marketing a product made of an alloy 
material meeting a certain specified composition. 

• The three critical ingredients of the alloy are manganese, silicon, and copper. The 
specifications require 15 pounds of manganese, 22 pounds of silicon, and 39 
pounds of copper for each ton of alloy to be produced. 

• This mix of ingredients requires the manufacturer to obtain inputs from three 
different mining suppliers. 

• Ore from the different suppliers has different concentrations of the alloy 
ingredients, as detailed in Table. 

• Given this information, the manufacturer must determine the quantity of ore to 
purchase from each supplier so that the alloy ingredients are not wasted.



Solution



Using these notations, we can formulate a general equation that defines 
(1) the relationships among the compositions of the ore shipped by the different 

suppliers, 
(2) the amount of ore needed from each supplier, and 
(3) the required composition of the final alloy as

in which m is the number of ingredients and n 
is the number of suppliers. For the case under 
consideration, both m and n equal 3·



Example 2: Electrical Circuit Analysis

Current flows in circuits are governed by Kirchhoff’s laws. 

• Kirchhoff’s first law states that the algebraic sum of the currents 
flowing into a junction of a circuit must equal zero.

• Kirchhoff’s second law states that the algebraic sum of the 
electromotive forces around a closed circuit must equal the sum of 
the voltage drops around the circuit, where a voltage drop equals the 
product of the current and the resistance·



Example 2: Electrical Circuit Analysis
Applying Kirchhoff’s first law at junction c

Applying Kirchhoff’s second law to network 
loop acdb

Applying Kirchhoff’s second law to network 
loop aefb



Assume that R1 = 2, R2 = 4, R3 = 5, V1 = 6, and V2 = 2



General Form For A System of Equations

in which the aij terms are the known 
coefficients of the equations, the Xj 
terms are the unknown variables, 
and the Ci terms are the known 
constants.
 
Since values for both the aij and Ci 
terms will be known for any problem, 
the system of equations represents n 
linear equations with n unknowns.



Iterative Equation-Solving Methods

• Linear equations can be solved by
• Direct equation-solving methods like the Gaussian elimination method

• the solution is found after a fixed, predictable number of operations

• A trial-and-error procedure or iterative methods.

• the number of operations required to obtain a solution is not fixed

• a major advantage of iterative methods is that they can be used to solve 
nonlinear simultaneous equations, a task that is not possible using direct 
elimination methods

Two of the most common methods, 

• The Jacobi and 

• Gauss– Seidel procedures



Jacobi Iteration

for a single linear equation with a single 
unknown, it is straightforward to solve for the 
unknown

Idea:



Jacobi Iteration



Jacobi Iteration



Jacobi Iteration Generalization



Jacobi Iteration Generalization



Jacobi Iteration Generalization

The acceptable difference is set by the user and influenced 
by the need for accuracy·

or



Example: Jacobi Iteration

Given the following set of equations, solve for values of the unknowns 
using Jacobi iteration:



Solution

values of X1 = X2 = X3 = 1 for this initial 
estimate are assumed.

These new values for X1, X2, and X3 are then used 
as the new solution estimate.



This process is repeated until the 
differences between the previous values 
and the new values are small.



If a maximum absolute change of less than 0.05



Using a fixed number of iterations can be inefficient.

We need a way to tell the solver to stop the iterations.

Convergence: When to Stop Iterating?

Successive calculations (iteration) continue until the 
tolerance value (TD) is satisfied



Gauss–Seidel Iteration (Multi-Step Iteration ) 
It is quite similar to the Jacobi method. 

• The only difference is; Substituting the calculated 𝑥𝑖 value into the 
next equation.

Idea: Always use most recent information.



Example

Solve: the following system of equations by taking 𝑇𝐷 = 0.05

An initial solution estimate of X1 = X2 = X3 = 1





If we re-arrange equations like



The first iteration cycle



The second iteration cycle





PIVOTING

• Pivoting is the displacement of rows in the coefficient matrix so that the diagonal 

elements are maximized in absolute value.
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