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10.1. MOTIVATION

• In calculus, the integration is the inverse process to differentiation. 

• According to the dictionary definition, to integrate means “to bring together, as parts, into a

whole; to unite; to indicate the total amount . . . “

• Mathematically, the integration is represented by

which stands for the integral of the function f(x) with respect to the independent variable x,

evaluated between the limits x = a to x = b.

• The function f(x) in equation above is referred to as the integrand.



• As suggested by the dictionary definition, the “meaning” of                                 is the total value,

or summation, of f(x) dx over the range x = a to b.

• In fact, the symbol ∫ is actually a stylized capital S that is intended to signify the close connection

between integration and summation. 

FIGURE 1 Graphical representation of the integral of f(x) 
between the limits x = a to b. The integral is equivalent to 

the area under the curve.

• As given in the figure, for functions lying above the x

axis, the integral expressed by

corresponds to the area under the curve of f(x) between x=

a and b.



• As stated before, the integral and 

differentiation are inverse to each 

other. 

• For example, if we are given a function

y(t) that specifies an object’s position

as a function of time, differentiation

provides a means to determine its

velocity, as in Figure 2(a).

FIGURE 2 The contrast between (a) differentiation and (b) integration.

• Conversely, if we are provided with

velocity as a function of time,

integration can be used to determine its

position, as in Figure 2(b).



• Thus, we can make the general claim that the evaluation of the integral

is equivalent to solving the differential equation for y(b) given the initial condition y(a) = 0.

As mentioned in previous chapter, the function to be differentiated or integrated will typically be in

one of the following three forms:

1. A simple continuous function such as a polynomial, an exponential, or a trigonometric function.

2. A complicated continuous function that is difficult or impossible to differentiate or integrate

directly.

3. A tabulated function where values of x and f(x) are given at a number of discrete points, as is often

the case with experimental or field data.



• Visually oriented approaches were employed to integrate

tabulated data and complicated functions in the

precomputer era.

• A simple intuitive approach is to plot the function on a grid

in Figure 3 and count the number of boxes that

approximate the area. 

FIGURE 3 The use of a grid to approximate an 
integral.



• Another commonsense approach is to divide the area

into vertical segments, or strips, with a height equal to

the function value at the midpoint of each strip (Fig.

4). The area of the rectangles can then be calculated

and summed to estimate the total area.

• In this approach, it is assumed that the value at the

midpoint provides a valid approximation of the

average height of the function for each strip. As with

the grid method, refined estimates are possible by

using more (and thinner) strips to approximate the

integral.

FIGURE 4 The use of rectangles, or strips, to 
approximate the integral.



10.2. MATHEMATICAL BACKGROUND

• General rules are available for integration of a function. To determine an integral between

specified limits,

• According to the fundamental theorem of integral calculus, equation above is evaluated as

where F(x) = the integral of f(x)- that is, any function such that             Nomenclature on 

the right side stands for 



Example: 



TABLE Some simple integrals.



10.3. NUMERICAL INTEGRATION

• Although such simple approaches have utility for quick estimates, alternative numerical

techniques are available for the same purpose.

• As in the simple strip method, numerical integration techniques utilize data at discrete points.

• Although continuous functions are not originally in discrete form, it is usually a simple

proposition to use the given equation to generate a table of values.



10.3.1 NEWTON-COTES INTEGRATION FORMULAS

• Idea: Replace a complicated function or a tabulated data with an approximating (interpolating)

function.

where n is the order of the polynomial.

1st order polynomial 2nd order polynomial 1st order with multiple segments



Trapezoidal Rule:

Idea: The trapezoidal rule is the first of the Newton-Cotes closed integration formulas. It

corresponds to the case where the polynomial in previous equation is first-order:

• Recall from intepolation chapter that a straight line can 

be represented as

• The area under this straight line is an estimate of the 

integral of f (x) between the limits a and b:

I= width* average height



Derivation of Trapezoidal Rule with Newton’s Divided Difference Method



Derivation of Trapezoidal Rule with Newton-Gregory Method

Remainder term1st order N.G formula

Change integration limits from x to 𝛼

න

𝑥=𝑞

𝑥=𝑏

𝑑𝑥 = න

𝛼=0

𝛼=1

ℎ𝑑𝛼



Error in Trapezoidal Rule:

When we employ the integral under a straight-line segment to approximate the integral under a

curve, we obviously can incur an error that may be substantial.

𝐼 = ℎ
𝑓 𝑎 + 𝑓 𝑏

2
−

1

12
𝑓′′ 𝜉 ℎ3

• Usually 𝑓′′ 𝜉  in the term can not be evaluated, since 𝜉 is not known. 

• If the function f is known than 𝑓′′ 𝜉  can be approximated with an average 2nd derivative. 

𝑓′′ 𝜉 ≈ ҧ𝑓′′ 𝑥 =
𝑎׬

𝑏
𝑓′′ 𝑥 𝑑𝑥

𝑏 − 𝑎
→  𝐸𝑎 = −

ℎ3

12
ҧ𝑓′′ 𝑥



Numerically integrate the following polynomial from a=0 to b=0.8. (Exact value is 1.640533)

Example:

𝐼 = 𝑏 − 𝑎
𝑓 𝑎 + 𝑓 𝑏

2



In actual situations, we would have no foreknowledge of the true value. Therefore, an 

approximate error estimate is required.

𝑓′′ 𝜉 ≈ ҧ𝑓′′ 𝑥 =
𝑎׬

𝑏
𝑓′′ 𝑥 𝑑𝑥

𝑏 − 𝑎
→  𝐸𝑎 = −

ℎ3

12
ҧ𝑓′′ 𝑥



The Multiple-Application Trapezoidal Rule

• In general, we have n+1 points and n intervals 

(segments). 

• If the points are equispaced h = (b-a)/n



Error in Multiple-Application Trapezoidal Rule:

• Add the individual errors for each interval

• Use a single  for the entire interval

• Similar to the single application of the trapezoidal rule, if the function f is known than f () can be 

approximated with an average 2nd derivative



Example:

𝐼 = 𝑏 − 𝑎
𝑓 𝑎 + 𝑓 𝑏

2



Example: Use the two-segment trapezoidal rule to estimate the integral of







Simpson’s 1/3 Rule:

Aside from applying the trapezoidal rule with finer segmentation, another way to obtain a more

accurate estimate of an integral is to use higher-order polynomials to connect the points.

Idea: Simpson’s 1/3 rule results when a second-order interpolating polynomial is used to 

approximate the integration.





Derivation of Simpson’s 1/3 Rule with Newton-Gregory Method

Notice that we have written the polynomial up to the 

fourth-order term rather than the third-order term as would 

be expected. 

The integral is from α = 0 to 2:



Error in Simpson’s 1/3 Rule:

As given in the previous part, Simpson’s 1/3 rule has a truncation error of 

Thus, Simpson’s 1/3 rule is more accurate than the trapezoidal rule.



Example: Use the Simpson’s 1/3 rule to estimate the integral



The Multiple-Application Simpson’s 1/3 Rule

Just as with the trapezoidal rule, Simpson’s rule can be 

improved by dividing the integration interval into a number of

segments of equal width as given in figure

The total integral can be represented as

Substituting Simpson’s 1/3 rule for the individual integral yields



Error in Multiple-Application Simpson’s 1/3 Rule:



Example: Use the multi-application Simpson’s 1/3 rule to estimate the integral



Summary on Newton-Cotes Integration Methods



NEXT WEEK 
NUMERICAL INTEGRATION
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