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10.1. MOTIVATION

« In calculus, the integration is the inverse process to differentiation.

 According to the dictionary definition, to integrate means “to bring together, as parts, into a

whole; to unite:; to indicate the total amount . . . <
« Mathematically, the integration is represented by
b
I = / f(x)dx

which stands for the integral of the function f(x) with respect to the independent variable X,

evaluated between the limits x =ato x = b.

 The function f(x) in equation above is referred to as the integrand.



b
* As suggested by the dictionary definition, the “meaning” of [ = / f(x)dx 1s the total value,
or summation, of f(x) dx over the range x = a to b. a

* In fact, the symbol J‘ is actually a stylized capital S that is intended to signify the close connection

between integration and summation. )

* As given in the figure, for functions lying above the x \
b
axis, the integral expressed by I = f flx)dx
a

corresponds to the area under the curve of f(x) between x=
a and b.

7.

a b X

FIGURE 1 Graphical representation of the integral of f(x)
between the limits x =a to b. The integral is equivalent to
the area under the curve.



 As stated before, the integral and
differentiation are inverse to each vo|
other.

« For example, if we are given a function
y(t) that specifies an object’s position
as a function of time, differentiation

200

provides a means to determine its
velocity, as in Figure 2(a). vy v

(1) = a (1)
=

200

« Conversely, If we are provided with

velocity as a function of time,
Integration can be used to determine its (@)
position, as in Figure 2(b).

FIGURE 2 The contrast between (a) differentiation and (b) integration.

(1) :f v(t)dt
0



b
« Thus, we can make the general claim that the evaluation of the integral 7 = f f(x)dx

IS equivalent to solving the differential equation jy = f(x) fory(b) given the initial condition y(a) = 0.
X

As mentioned in previous chapter, the function to be differentiated or integrated will typically be in
one of the following three forms:

1. A simple continuous function such as a polynomial, an exponential, or a trigonometric function.

2. A complicated continuous function that is difficult or impossible to differentiate or integrate
directly.

3. A tabulated function where values of X and f(X) are given at a number of discrete points, as is often

the case with experimental or field data.




Visually oriented approaches were employed to integrate
tabulated data and complicated functions 1n the
precomputer era.

A simple intuitive approach is to plot the function on a grid
in Figure 3 and count the number of boxes that

approximate the area.

FIGURE 3 The use of a grid to approximate an
integral.



Another commonsense approach is to divide the area
into vertical segments, or strips, with a height equal to
the function value at the midpoint of each strip (Fig.
4). The area of the rectangles can then be calculated
and summed to estimate the total area.

In this approach, it i1s assumed that the value at the
midpoint provides a valid approximation of the
average height of the function for each strip. As with
the grid method, refined estimates are possible by
using more (and thinner) strips to approximate the

integral.

a b

FIGURE 4 The use of rectangles, or strips, to
approximate the integral.



10.2. MATHEMATICAL BACKGROUND

* General rules are available for integration of a function. To determine an integral between
specified limits,

b
I :f fix)dx

* According to the fundamental theorem of integral calculus, equation above 1s evaluated as
b
f flx)dx = F(I]E

where F(x) = the integral of f{x)- that is, any function such that F’(x) = f(x). Nomenclature on
the right side stands for

F(x)| = F(b) — F(a)



0.8
Example: = ﬁ (0.2 + 25x — 200x% + 675x> — 900x* + 400x°) dx

For this case, the function is a simple polynomial that can be integrated analytically by

evaluating each term according to the rule
b

b n+1
X
x"dx =
o n+1],

where n cannot equal —1. Applying this rule to each term in Eq.

I = 0.2x + 12.5x° —2—20t + 168.75x* — 180x° +4—ém1:

0

I =1.6405333.

This value is equal to the area under the original polynomial between x = 0 and 0.8.



TABLE Some simple integrals.
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10.3. NUMERICAL INTEGRATION

* Although such simple approaches have utility for quick estimates, alternative numerical
techniques are available for the same purpose.

* Asin the simple strip method, numerical integration techniques utilize data at discrete points.

* Although continuous functions are not originally in discrete form, it is usually a simple
proposition to use the given equation to generate a table of values.

flx) 4

Discrete points

Continuous
function

2
.3/2
(a) f 2+{:ns{14.r;n ) , 05x 4
0 V1 +05sinx

\ 4

X flx) (c)
0.25 | 2.599
(b) 0.75 | 2.414 »
1.25 | 1.945
1.75 | 1.993




10.3.1 NEWTON-COTES INTEGRATION FORMULAS

* Idea: Replace a complicated function or a tabulated data with an approximating (interpolating)
function.

b b
I:f f(x)dx”:"f fn(x)dx

where f,,(x) = a polynomial of the form
ﬁ?(x) =dy +ayxX + -+ aﬁ'—lxﬁ_l + anx”
where n 1s the order of the polynomial.

f(X) f(x) f(X)

a b a b a

1st order polynomial 2nd order polynomial 1st order with multiple segments



Trapezoidal Rule:

Idea: The trapezoidal rule 1s the first of the Newton-Cotes closed integration formulas. It

corresponds to the case where the polynomial in previous equation is first-order:

b b
= [ fwaz [ fiwa )y

* Recall from intepolation chapter that a straight line can
be represented as

f®) - f@

b—a —a)

J1(x) = fla) +

f(a)

* The area under this straight line 1s an estimate of the
integral of f (X) between the limits a and b:

7 — /b [f(a) n J®) — fla) (x — a)} dx  Theresult of the integration

b—a

[=(—a)

J(a) + 1(®)

|= width* average height



Derivation of Trapezoidal Rule with Newton’s Divided Difference Method

A = flay+ 22 =S@D
b —a
b) — b) —

Grouping the last two terms gives

S(b) — f(a)x n bfla) —af(a) —af(b) + afla)
b—a b—a

Nilx) =

Jb) — fla)  bfla) —af(b)
x +

Six) = b—a b—a

which can be integrated between x = a and x = b to yield

_ J®) — fla) x* | bfta) —afh) ’
 b—a 2 b—a

I

i

This result can be evaluated to give

by — fla) B —a?) _ bfa) — af(b)
- + (
b—a 2 b—a

I

Now, since b*> — a* = (b — a) (b + a),

b
I=[fb) - fla)] % + bfia) — afib)

Multiplying and collecting terms yields

fla) + f(b)

I =(b—a) >

which is the formula for the trapezoidal rule.

b—a)



Derivation of Trapezoidal Rule with Newton-Gregory Method

Newton's formula, or the Newton-Gregory forward formula,

A f(xp)
fu(x) = flxo) + Af(xo)a + 1 a(e — 1)
AH
+ -+ ffxﬂ)a(a—l)---(a—n+l) where o =
b "
I = f [f(a) + Af(a)a + / z(g)a(ar — l)hz} dx ————————-
1st order N.G formula Remainder term

Change integration limits from x to «

x=b a=1
a= (x—a)/h, dx = h dao dx = hda

xX=q a=0

X — X0

1
L r—n f [ﬂa) + Aftae +
0

/()

o(a — l)hz] da

If it is assumed that, for small %, the term f”(&) is approximately

constant, this equation can be integrated:

1

2 3 2
I=h [aﬂa) + 5 Af@) + (% - %) f""(é)hz}
0
and evaluated as
A 1
I =h [f(fl) + j;(a)] — ﬁf”@)hg

Because Af(a) = f(b) — f(a), the result can be written as

S+ 1
=h > j 12f (§)hJ

v T

Trapezoidal rule Truncation error

I




Error in Trapezoidal Rule:

When we employ the integral under a straight-line segment to approximate the integral under a
curve, we obviously can incur an error that may be substantial.

_ fl@+f) 1,
I=h : —5f (&n?

« Usually f""(€) in the term can not be evaluated, since ¢ is not known.

* If the function fis known than f''(&) can be approximated with an average 2nd derivative.

I cl/ _ f;f”(X)dX _ h3 cl/
Fr@O~ ) =" Ea=—f()




Example:

Numerically integrate the following polynomial from a=0 to b=0.8. (Exact value is 1.640533)

flx) = 0.2 4+ 25x — 200x% + 675x> — 900x" + 400x°

the trapezoidal rule

fa) + f(b)

I=(0b—a) >

The function values

f(0) =0.2
f(0.8) = 0.232
0.2 +0.232
substituted into Eq. 1=0.38 ; =0.1728

which represents an error of

E, =1.640533 — 0.1728 = 1.467733  a percent relative error of & = 89.5%.



In actual situations, we would have no foreknowledge of the true value. Therefore, an
approximate error estimate is required.

i f" ()dx R,
h_q -  Eg = _Ef (x)

() = () =

f'(x) = —400 + 4050x — 10,800x* + 8000x"

The average value of the second derivative can be mmpu[ed

0.8
f (—400 + 4050x — 10,800x% + 8000x3) dx
flx) =22

— —60
0.8—0

1



The Multiple-Application Trapezoidal Rule

Jx)

In general, we have n+1 points and n intervals
(segments).
If the points are equispaced h = (b-a)/n

=4

X
if(x) dx = Tf(x) dx + Tf(x) dx + ...+ Tf(x) dx
a x0 x1 x(n-1)
AUCORLCIIRERCIELCO NN (S RLCH,

n-1

- f(xﬂ) + sz(xl) + f(xn)

; [f(xu) + Zzlf(xi) + f(x“)] = (b-a) 2n




Error in Multiple-Application Trapezoidal Rule:

. Add the individual for each interval _ P ey (-3 o
e individual errors for each interva E, 12 Ef (&) 191 izl:f (&)
Use a single & for the entire interval > (&) = nf'(¢)
i=1
_ (-a) ., _ (b-a)h® _,

 Similar to the single application of the trapezoidal rule, if the function f is known than f (&) can be
approximated with an average 2"d derivative

b

j f”(x) dx

FE) =~ F) =>—— > E -

_(b-a)’

m [0




Example:

flx) = 0.2 4+ 25x — 200x% + 675x> — 900x" + 400x°

the trapezoidal rule

fa) +f(b)
2

[=((b—-a)

The function values

f(0) =0.2
f(0.8) = 0.232
0.2 +0.232
substituted into Eq. 1=0.38 > =0.1728

which represents an error of

E, =1.640533 — 0.1728 = 1.467733  a percent relative error of & = 89.5%.



Example: Use the two-segment trapezoidal rule to estimate the integral of from a =0 to b = 0.8.

flx) = 0.2 + 25x — 200x% + 675x° — 900x* + 400x” the correct value for the integral is 1.640533.

Solution.
n=2(Mh=0.4):

f0)=02  f0.4)=2456  £(0.8) =0.232

0.2 4 2(2.456) + 0.232

I=038 = 1.0688
-
E; = 1.640533 — 1.0688 = 0.57173 g = 34.9%
3
E, = 0.8 (—60) = 0.64

T 12(2)2



Example: Integrate f(x)= e* from a=1.5 to a=2.5 using the Trapezoidal Rule. Estimate the
error.

True value is e2-3 — e1-5 = 7,700805

Using the trapezoidal rule:

a=15 b=25 h=25-15=1.0 1~ ph @) 4 pe"+e™ g 335002
E,=-0.631287, &=-82% 2 2

h " 0 X
Estimated error: E. = — h° !f o) = — 1 fLe o = —-0.641734

»® 712  b-a 12 1.0



Example: Integrate f(x)= e* from a=1.5 to a=2.5 using the Trapezoidal Rule. Use a step size
of 0.25. True value of the integral is 7.700805.

a = 1.5, b = 2.5, h =0.25 than we have n=4 intervals.

n-1

_ f(x,) + 2, f(x;) + f(x,)

I~ (b-a) = - (2.5- 1.5)[ e

+ z(el.?5+e2 +EZ.25) + E2.5
2(4)

I~ 7.740872 , E, = - 0.040067/, & =-0.5%

b o, oy SO0 &

s T T X 124  (1.0)

Estimated error: E = -0.040108

Note that the calculation of E, requires the evaluation of the same integral that the question asks
for. Of course the integral in E, can laso be calculated numerically. This approach also gives

_ (L0)* 7.740872

_ ~0.040317
2 12(4)’ (1.0)




Simpson’s 1/3 Rule:

Aside from applying the trapezoidal rule with finer segmentation, another way to obtain a more
accurate estimate of an integral is to use higher-order polynomials to connect the points.

Idea: Simpson’s 1/3 rule results when a second-order interpolating polynomial is used to
approximate the integration.

b b
I:f f(x)dx'“:“’f fa(x)dx

If @ and b are designated as xy and x; and f>(x) is represented by a second-order Lagrange polynomial

, the integral becomes

_I_
(xp — x1)(xp — X2) J (xo) (x1 — x0)(x1 — xz)f(xl)

I= f [ (x —x)(x = x2) (x —x0)(x — x2)

N (x — x0)(x — x1) f(xg)} i

(X2 — Xxp)(x2 — Xx7)




After integration and algebraic manipulation, the following formula results:
_h
I = 2 [ f(x0) +4f(x1) + f(x2)]  where, for this case, h = (b — a) /2.

Simpson’s 1/3 rule can also be expressed " f(xo) + 4 f(x1) + f(x2)
I =(b—a)
6

N - —

Width Average height




Derivation of Simpson’s 1/3 Rule with Newton-Gregory Method

Newton's formula, or the Newton-Gregory forward formula,

X2 AZ
1 =f [f(xn) + Af(xo)a + j;(xn)a(a —1)
3
+ 2 ’;(x”)a(a — (e —2)

(4)
f Zf)a(a — (e — 2)(a — 3)}14] dx

Notice that we have written the polynomial up to the
fourth-order term rather than the third-order term as would

be expected.

The integral is from a = 0 to 2:
A% f(x0)

2
I:hf [f(xg)—|-Af(xg)a—|— > a(ax—1)
0
3
A ng“)a(a — D —2)
(4)
+ J zf)a(a — (e — 2) (o — B)ﬂ da

§ 4
4 3 2
-I-(a 2 -I-{JE )A3f(x0)

24 6 6
2
-5 )f‘“(é')h‘*]

a’ ot 1la’
120 16" 72
and evaluated for the limits to give
A’ f(x0)
3

o2 o3 2
I=h [&'f(xﬁ) + ?ﬁf(xu) + (— — —) A*f(x0)

2

0

I=h [Zf(xG) + 2A f(x0) +

L
+ (0) A’ f(xo) — f (&)h*

h
=3 [ flxo) + 4.1(x1) + f(xz)] — —f(‘“ (s)kﬁ

o o

Simpson's 1/3 rule Truncation error



Error in Simpson’s 1/3 Rule:

As given in the previous part, Simpson’s 1/3 rule has a truncation error of

_ s
E; = gohf (&)

or, because 1 = (b — a) /2,

(b —a)’
2880

E, = fA®

where & lies somewhere in the interval from a to b.

Thus, Simpson’s 1/3 rule is more accurate than the trapezoidal rule.



Example: Use the Simpson’s 1/3 rule to estimate the integral  from @ =0 to b = 0.8.

flx) = 0.2 4+ 25x — 200x% + 675x> — 900x* + 400x>  the correct value for the integral is 1.640533.

Solution.

f0)=0.2  A0.4)=2.456  £(0.8) =0.232

10825t 4(2‘4;’6) 0232 _ 1 367467

which represents an exact error of
E; = 1.640533 — 1.367467 = 0.2730667 er = 16.6%

which is approximately 5 times more accurate than for a single application of the trapezoidal rule

(0.8)°

The estimated error is E, = —
2880

(—2400) = 0.2730667



The Multiple-Application Simpson’s 1/3 Rule

0, Just as with the trapezoidal rule, Simpson’s rule can be
improved by dividing the integration interval into a number of
segments of equal width as given 1n figure

b—a

n

h =

The total integral can be represented as

“ b 1:[ f(x)dx+f f(x)dx+---+f” f(x) dx

X0 X2 Xn—2

Substituting Simpson’s 1/3 rule for the individual integral yields

f(x0)+4f(x1)-|—f(X2)_I_th(xz)-l—"lf(xs)-l-f(m) n—1 n—
6 6 flxo)+4 ) flxy) +2

2
f(x”—Z) + 4f(xn—l) + f(-xn) J = (b _ a) i=1,3,5 ; Jj=2,4,6
6 n

Ny =

1 =2h

f(xj) + f(xn)

4o+ 2h

Width Averag; height
or, Comblﬂlng terms



Error in Multiple-Application Simpson’s 1/3 Rule:

An error estimate for the multiple-application Simpson’s rule is obtained in the same
fashion as for the trapezoidal rule by summing the individual errors for the segments and
averaging the derivative to yield

where @ is the average fourth derivative for the interval.



Example: Use the multi-application Simpson’s 1/3 rule to estimate the integral from a =0 to b = 0.8.

flx) = 0.2 4+ 25x — 200x% + 675x> — 900x* + 400x>  the correct value for the integral is 1.640533.

Solution. n=4 (h=0.2):

£0)=0.2 £0.2) = 1.288
£(0.4) =2.456  £(0.6) = 3.464
£(0.8) = 0.232
0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232
[=0g 2ot al.c08 4 5208 F £(2490) + — 1.623467

12
E; = 1.640533 — 1.623467 = 0.017067 g; = 1.04%

The estimated error

0.8)°
E, = — (0.8) (—2400) = 0.017067
180(4)*




Summary on Newton-Cotes Integration Methods

TABLE 21.2 Newion-Cotes closed integration formulas. The formulas are presented in the
format of Eq. (21.5) so that the weighting of the data points to estimate the
average height is apparent. The step size is given by h= (b — a)/n.

Segments
(n) Points Name Formula Truncation Error
1 2 Trapezoidal rule (b—al M —(1/12)h°F"g)
2 3 Simpson’s 1/3 le  (b—q) fixo) + 4 ’E‘“] + fixa) — (1/90)f4g)
3 4 Simpson'’s 3/8 e (b— a) 1Pl * 3 ; 3t + flxa — (3/80}h5FIg)
4 5 Boole's Ul b dl 7flxo) + 32f[x) + 12@%@] + 32flx3) + 7flx4) _ (8/945)WFég)
5 6 b al 19f[x0) + 75f(x1) + 50f(x2) + 50f(x3) + 75f(x4) + 19f(xs) _(275/12,096)W FOlg)

288




NEXT WEEK
NUMERICAL INTEGRATION
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