
Ch.7. Transformation of Stress
Transformation of Plane Stress and Mohr’s Circle 



Objectives

Application of stress transformation equations to plane stress 
situations to determine any stress component at a point.

Application of the alternative Mohr's circle approach to perform 
plane stress transformations.

Usage of transformation techniques to identify key components of 
stress, such as principal stresses.



• The most general state of stress at a given 

point 𝑄 is represented by six components. 

Three of these components, 

✓𝜎𝑥 , 𝜎𝑦 , and 𝜎𝑧 , are the normal stresses 

exerted on the faces of a small cubic 

element centered at 𝑄  with the same 

orientation as the coordinate axes.

✓The other three, 𝜏𝑥𝑦, 𝜏𝑦𝑧, and 𝜏𝑧𝑥, are the 

components of the shearing stresses on the 

same element.



• The same state of stress can be represented by a different set of components if the 
coordinate axes are rotated



• Our discussion of the transformation of stress will 

deal mainly with plane stress, i.e., with a situation in 

which two of the faces of the cubic element are free 

of any stress. 

• If the z axis is chosen perpendicular to these faces, 

𝝈𝒛 = 𝝉𝒛𝒙 = 𝝉𝒛𝒚 = 𝟎, and the only remaining stress 

components are 𝝈𝒙, 𝝈𝒚, and 𝝉𝒙𝒚.
Plane stress

represantation



• The plane-stress situation occurs in a thin plate subjected 

to forces acting in the midplane of the plate.

• It also occurs on the free surface of a structural element or 

machine component where any point of the surface of that 

element or component is not subjected to an external 

force.



Transformation of Plane Stress

Transformation Equations

• Assume that a state of plane stress exists at point 𝑄 (with 

𝜎𝑧 = 𝜏𝑧𝑥 = 𝜏𝑧𝑦 = 0 ) and is defined by the stress 

components 𝜎𝑥, 𝜎𝑦, and 𝜏𝑥𝑦 associated with the element 

shown in Figure a.

• The stress components 𝜎𝑥′ ,𝜎𝑦′ , and 𝜏𝑥′𝑦′ associated 

with the element are determined after it has been 

rotated through an angle 𝜃  about the z axis. These 

components are given in terms of 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦, and 𝜃

(Figure b).

(a)

(b)



• In order to determine the normal stress 𝜎𝑥′ and shearing stress 𝜏𝑥′𝑦′  
exerted on the face perpendicular to the 𝑥′ axis, consider a prismatic 
element with faces perpendicular to the 𝑥, 𝑦, and 𝑥′ axes.

Free-body diagramGeometry of the element



• Using components along the x’ and y’ axes, the equilibrium 
equations are

• Solving the first equation for 𝜎𝑥′ and the second for 𝜏𝑥′𝑦′:

Since

and



• The normal stress 𝜎𝑦′  is obtained by replacing 𝜃 in equation by the angle 
𝜃 + 90° that the 𝑦′ axis forms with the 𝑥 axis. Since cos 2𝜃 + 180° = −𝑐𝑜𝑠2𝜃 
and sin 2𝜃 + 180° = −𝑠𝑖𝑛2𝜃,



𝜎𝑥 + 𝜎𝑦 = 𝜎𝑥′ + 𝜎𝑦′

• Since 𝜎𝑧 = 𝜎𝑧′ = 0, we thus verify for plane stress that the sum of the normal 
stresses exerted on a cubic element of material is independent of the orientation 
of that element.

• Adding and equations side by side:



Principal Stresses and Maximum Shearing Stress

• Previous equations are the parametric equations of a circle. This means 
that, 

if a set of rectangular axes is used to plot a point M of abscissa 𝜎𝑥′  and 
ordinate 𝜏𝑥′𝑦′  for any given parameter 𝜃, all of the points obtained will lie on 
a circle.



• To establish this property, we eliminate 𝜃 from equations by first transposing 
(𝜎𝑥+𝜎𝑦)/2 in

• and squaring both members of the equation, then squaring both members of

• and finally adding member to member the two equations obtained above:



• Setting

• is given as

• which is the equation of a circle of radius 𝑅 centered at the point 𝐶 of 
abscissa 𝜎𝑎𝑣𝑒 and ordinate O.



• Due to the symmetry of the circle about the horizontal axis, the same 
result is obtained if a point N of abscissa 𝜎𝑥′  and ordinate −𝜏𝑥′𝑦′  is 
plotted instead of M.



• The points A and B where the circle intersects the 

horizontal axis are of special interest: point A 

corresponds to the maximum value of the normal 

stress 𝜎𝑥′ , while point B corresponds to its 

minimum value. Both points also correspond to a 

zero value of the shearing stress 𝜏𝑥′𝑦′. Thus, the 

values 𝜃𝑝 of the parameter 𝜃 which correspond to 

points A and B can be obtained by setting 𝜏𝑥′𝑦′ = 0 

in



• This equation defines two values 2𝜃𝑝 that are 180° apart and thus two values 𝜃𝑝 that 
are 90°  apart. Either value can be used to determine the orientation of the 
corresponding element.

(orientation of the corresponding 
element)



• The planes containing the faces of the element obtained in this way are the principal 
planes of stress at point 𝑄, and the corresponding values 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 exerted on 
these planes are the principal stresses at 𝑄.

• Since both values 𝜃𝑝 defined by the equation below are obtained by setting 𝜏𝑥′𝑦′ = 0 

• It is clear that no shearing stress is exerted on the principal planes.



From the figure given:

Substituting 𝜎𝑎𝑣𝑒 and R:



• Points D and E located on the vertical diameter of the 
circle correspond to the largest value of the shearing 
stress 𝜏𝑥′𝑦′. Since the abscissa of points D and E is 
𝜎𝑎𝑣𝑒 = (𝜎𝑥 + 𝜎𝑦)/2, the values 𝜃𝑠 of the parameter 𝜃 
corresponding to these points are obtained by setting 
𝜎𝑥′ = (𝜎𝑥 + 𝜎𝑦)/2 in 

• The sum of the last two terms in that equation must 
be zero. Thus, for 𝜃 = 𝜃𝑠,



• This equation defines two values 2𝜃𝑠 that are 180° apart, and thus two
values 𝜃𝑠  that are 90° apart. Either of these values can be used to 
determine the orientation of the element corresponding to the maximum 
shearing stress.

• It is also shown that the maximum value of the shearing stress is equal to 
the radius R of the circle.


	Slayt 1: Ch.7. Transformation of Stress
	Slayt 2: Objectives
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7:  Transformation of Plane Stress
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12: Principal Stresses and Maximum Shearing Stress
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21

