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® Motivation: T p A Y

® Often we have discrete data (tabulated, ____If _____ ]f(iiri_____W_/_(_m__Ii)____N__S_/_m_z__
from experiments, etc) that we need to 100 3.5562 0.0093 7.110e-06
interpolate. 150 2.3364 0.0138 1.034e-05
® |nterpolating functions form the basis for 200 1.7458 0.0181 1.325e-05
250 1.3947 0.0223 1.596e-05

numerical integration and differentiation 300 1.1614 0.0263 1.846e-05
techniques 350 0.9950 0.0300 2.082e-05
® Used for solving ODEs & PDEs 400 0.8711 0.0338  2.301e-05

e we will cover this later 450 0.7750 0.0373 2.507e-05
500 0.6864 0.0407 2.701e-05

® Concept: 550 0.6329 0.0439  2.884e-05
. . . 600 0.5804 0.0469 3.058e-05

® Choose a polynomial function to fit to the 650 0. 5356 0.0497  3.2250_0%
data (connect the dots) 700 0.4975 0.0524  3.388e-05
® Solve for the coefficients of the polynomial 750 0.4643 0.0543  3.546e-05
® Fvaluate the polynomial wherever you 590 04354 0-0575 3698205
850 0.4097 0.0596 3.843e-05

want (interpolation) 900 0.3868 0.0620 3.981le-05
950 0.3666 0.0643 4.113e-05

1000 0.3482 0.0667 4.244e-05

Incropera & DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed.
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Find value:

p(132)=13.56+ s x (132 —100) = 2.79



INTRODUCTION

* Interpolation is a method of estimating the intermediate values between precise data
points.

* The basis of all interpolation algorithms is the fitting of some type of curve or function
to a subset of the tabular data.

* Thus, we first fit a function that exactly passes through the given data points and than
evaluate intermediate values using this function.

Polynomial Interpolation Spline Interpolation

fix) f(x)

extrapolation - - - - —-><----—- ==
interpolation | — — | :
l |
| |
l |




6.1 Polynomial Interpolation

In this method, an nth-order polynomial is used as the interpolation

function, f(x):

fix)=by+bx+b,x*+bx3+ ...+ b x"

The constants in equation above, b,, b,, b,, b, ..., b,, are determined using
the measured data points. (x;, ¥;), (X5, ¥5), (X3, ¥3), -+ (Xos1r Yne)-

Here, y,=f(x)



# data points fit equation

2 points straight line b0+ blx
3 points quadratic b() + blx + b2x2
4 points cubic bo blx + b2x2+ b3x3

n+1 points nth order bo + blx + b2x2-|— . bnxn



Linear Interpolation:

* Given data points: (Xy, Vo) and (xy, y,)

; ™~ * A straight line passes from these two
ag + ay X .
point

* Using similar triangles:

y1 = f(xq)
f(x) =7

Yo = f(Xg)

Linear interpolation formula

fOI=f (o) _fOD=f(X0)  why | f(a)=f(rg)+LFD=S o)

X—Xgo X1—Xo X1~Xo

X—X0

or f(x)=by+ b (x — x)




* Quadratic Interpolation:
* Given: (X Yo) + (X1, Y1) and (X Y)
y2=1x) p----------s » A parabola passes from these three points.

i=8x) p----- \

* Similar to the linear case, the equation of
this parabola can be written as

E f,(x)=bg + by(x=-Xg) + by(x-Xg)(X-x;)

Yo=1(xg) |-~

Quadratic interpolation formula

» How to find by, b; and b, in terms of given quantities?

eat x=xp f(X) = f(Xg) = by — bg = f(xg)
eat x=x; f(X) = f(Xy) = by + byXy . f(x4) - f(xp)
X3 —Xg

eat X=X fo(x) = f(x3) = bg + by(X-Xp)+ b3 (X2-Xg) (X7X3)

) - f(x1) _ F(x1) - f(x)
X, - X1 X1 —Xp

—> b, =

Xy —Xp



Example 1

The upward velocity of a rocket is given as a function of time in Table 1.

Find the velocity at t=16 seconds using the direct method for linear

interpolation.

Table 1 Velocity as a function

of time.

t,(s) |v(t) (m/s)
0 0
10 227.04
15 362.78
20 517.35

22.5 602.97
30 901.67

1000

Welocity vs. Time

900+
800+
700+
500+
500+

Yelocity (mis)

400
300+
200
100

O
]

5 10 15 20 25 a0 35
Time (s)

Figure 1 Velocity vs. time data for the

rocket example



Solving by Linear Interpolation

v(t)=a, +at y
v(15)=a, +a,(15) = 362.78 (x, v,

v(20)=a, +a,(20)=517.35 . / N

Solving the above two equations gives
a, = —-100.93 a = 30.914 Figure 3 Linear interpolation.

> X

Hence
v(t)=—-100.93+30.914t, 15 <t < 20.

v(16)=—100.93 +30.914(16) = 393.7 m/s



Solving by Quadratic Interpolation

v(t)=a, +at +at’ )
v(10)=a, +3,(10)+a,(10)" = 227.04 e.32)
)

v(15)=a, +a,(15)+a,(15)" = 362.78
v(20)=a, +a,(20)+a,(20)° =517.35

(%, Yo)

Figure 6 Quadratic interpolation.

Solving the above three equations gives

a,=12.05 a =17.733 a, =0.3766



Quadratic Interpolation (cont.)

550

v(t)=12.05+17.733t + 0.3766t%, 10 <t <20

v(16)=12.05+17.733(16 )+ 0.3766(16 )’

300 [~

=392.19 m/s _

227.04, o0 I I
10 12 14 16 18 20
i .20,

.10, X, Fange, X gesired

The absolute relative approximate error |€,| obtained between
the results from the first and second order polynomial is

] 392.19

=0.38410%




Solving by Cubic Interpolation

v(t)=a, +at +a,t? + a,t’

v(10)=227.04 = a, +a,(10)+a,(10)° + a,(10)’

v(15)=362.78 = a, +a,(15)+ a,(15)° + a,(15)’

v(20)=517.35 = a, + a,(20)+ &,(20)° + a,(20)’

v(22.5)=602.97 = a, +a,(22.5)+ a,(22.5)° +a,(22.5)’

a =-42540 a =21.266 a,=013204 a,=0.0054347

Figure Cubic interpolation.

ol /



Cubic Interpolation (contd)

v(t)=—4.2540 + 21.266t +0.13204 1 +0.0054347 t°, 10<t<22.5

v(16)=—4.2540+21.266(16)+0.13204(16 )’ + 0.0054347(16 )’
=392.06 m/s

00000000000

The absolute percentage relative
approximate error |€,| between
second and third order polynomial is

392.06-392.19
392.06
221.04 200‘11%‘ R— Xl'e 1'8 » 2 B =0.033269%

‘xlOO

el-




Table 2 Comparison of different orders of the polynomial.

Order of
Polynomial 1 2 3
v(t=16)m/s 393.7 392.19 392.06
Absolute Relative | 0.38410 % | 0.033269 %

Approximate Error

Comparison Table
t(s) v (m/s)
0 0
10 227.04
15 362.78
20 517.35
22.5 602.97
30 901.67




Newton’s Divided Difference Interpolating Polynomials

» We can generalize the linear and quadratic interpolation formulas for an nth order polynomial
passing through n+1 points

fa(X) = bg + by (X-X) + Dy (X-X%)(x-%1) + ... +Dby(x-%X)(X~Xq): - (X~ Xpq)

where the constants are

bo = f(Xg) by, = f [x4, Xol by = f [Xa, X1, Xol v by = [Xns Xp-1s + « o X1, Xp]

where the bracketed functions are finite divided differences evaluated recursively

f(x;) - f(x;)

Ii—][]-

f[x, x;] = 1st finite divided difference

I, %51 - F[x;, %]
Xj— Xk

2nd finite divided difference

f[xi!' Xijr 1k] =

f[Xp, Xp_1y e X715 Xg] = FIXnr Xn-17emr X1d = F1Xn 170 X1/ X0] nth finite divided difference
Xn—Xp

 There nth order Newton’s Divided Difference Interpolating polynomial is
fa) = flxg) + (x-%p) fIxy Xl + (X -X%g)(x - Xyp) fIXp Xy, Xp] +

+ {K - Ku)(}{ B }(1] T (I B xn—l) f:[}'{nr Xn-1r » = w Xqs x[}]




Example 29:

The following logarithmic table is given.

x | f(x)=log(x)

(a) Interpolate log(5) using the points x=4 and x=6

4.0 0.60206
4.5 | 0.6532125 (b) Interpolate log(5) using the points x=4.5 and x=5.5
>-> | 0.740362/ Note that the exact value is log(5) = 0.69897

6.0 | 0.7781513

(a) Linear interpolation. f(x) = f(xg) + (x - Xg) Xy, Xgl
Xg=4, X =6 — f[xq, Xo] = [f(6) —f(4)] / (6 - 4) = 0.0880046
f(5) = f(4) + (5 - 4) 0.0880046 = 0.690106 & =127 %

(b) Again linear interpolation. But this time
Xg = 4.5, X4 =55 — fx4, x¢] = [f(5.5) — f(4.5)] / (5.5 - 4.5) = 0.0871502
f(5) = f(4.5) + (5 -4.5) 0.0871502 = 0.696788 & =0.3%



Example 29 (cont'd):

x | f(x)=log(x)
4.0 | 0.6020600
4.5 | 0.6532125
5.5 | 0.7403627
6.0 | 0.7781513

(c) Quadratic interpolation.

(c) Interpolate log(5) using the points x=4.5, x=5.5 and x=6

Xg =45, % =55,% =6—> f[X;, X] = 0.0871502 (already calculated)
f{x;, %1 = [f(6) — f(5.5)] / (6 — 5.5) = 0.0755772

fIxy, X1, Xgl = {f[X3, %11 - fIX1, Xl / (6 —4.5) = -0.0077153

f(5) ~ 0.696788 + (5 - 4.5)(5 - 5.5) (-0.0077153) = 0.698717 &, = 0.04 %

» Note that 0.696788 was calculate in part (b).

* Errors decrease when the points used are closer to the interpolated point.

* Errors decrease as the degree of the interpolating polynomial increases.



Finite Divided Difference (FDD) Table

Finite divided differences used in the Newton’s Interpolating Polynomials can be presented in a table
form. This makes the calculations much simpler.

X f() fl, ] fl, ] fl,,.]
X f(xo) f[Xy, %] Fx, %, %] | TIX3, %, %3, %]
X1 f(x,) f Xz, %] f X3, X, X4]

Xy f(x,) fx3, %,]

X3 f(x3)

Exercise 27: The first two columns of the following table is given. Calculate the missing finite
divided differences.

X f() fl, ] fl, ] fl,,.]

4 0.6020600 ? ? ?
4.5 0.6532125 ? ?
5.5 0.7403627 ?

6 0.7781513

» The numbers decrease as we go right in the table. This means that the contribution of higher order
terms are less than the lower order terms.

» This is expected. The opposite behavior is an indication of an inappropriate interpolation (see exam
questions of Fall 2006).



Example 30: X () f, ] fl, ] fil,, .,
0.6020600 0.1023050 -0.0101032 0.001194
4.5 0.6532125 0.0871502 -0.0077153
5.5 0.7403627 0.0755772

6 0.7781513

Use this previously calculated table to interpolate for log(5).

(a) Using points x=4 and x=4.5.

log (5) ~ 0.60206 + (5 - 4) 0.102305 = 0.704365

(b) Using points x=4.5 and x=5.5.

g = 0.8 % (this is extrapolation)

log (5) ~ 0.6532125 + (5 - 4.5) 0.0871502 = 0.696788 & = 0.3 %

(c) Using points x=4 and x=6.

The entries of the above table can not be used for this interpolation.
(d) Using points x=4.5 , x=5.5 and x=6.
log (5) ~ 0.6532125 + (5-4.5) 0.0871502 + (5-4.5)(5-5.5)(-0.0077153)= 0.698717 & = 0.04 %

(e) Using all four points.

log (5) ~ 0.60206 + (5 - 4) 0.102305 + (5 - 4)(5 - 4.5)(-0.0101032)
+ (5 - 4)(5 - 4.5)(5 — 5.5)(0.001194) = 0.6990149 ¢, = 0.006 %



Exercise 28:

Create the FDD table for the given data set. Use it to

X f0) interpolate for f(2).
-2 -0.909297
» For a linear interpolation use the points x=1 and x=3.
-1 -0.841471
» For a quadratic interpolation either use the points x=0, x=1
0 0.000000 and x=3 or the points x=1, x=3 and x=4.
1 0.841471 + For a third cubic interpolation use the points x=0, x=1, x=3
3 0.141120 and x=4.
4 -0.756802
Important: Always try to put the interpolated point at the
6 -0.279415 center of the points used for the interpolation.

Exercise 29: Complete the following table given for the log function. Do you observe anything
strange? Comment.

X f() fL, ] fl, /] fl,,.] fl,,..1 [fl...,..]
0.5

1
3
2
8

10




Errors of Newton’s DD Interpolating Polynomials
faX) = f(xg) + (x-%p) fIxy Xol + (X -Xo)(X - %) fIXp X5, Xl +
+ (X = X)(X = Xg) -+ (X = Xpq) FIXps Xpogs o+ o Xqs Xg]

» The structure of Newton'’s Interpolating Polynomials is similar to the Taylor series.

n+1
» Remainder (truncation error) for the Taylor series was R, = ﬁ(lm - x;)"1

» Similarly the remainder for the nth order interpolating polynomial is

~ fn+1(€)
" (n+1)

(c—xg)(x-%x1)...(x-x,)

where ¢ is somewhere in the interval containing the interpolated point x and other data points.
» But usually only the set of data points is given and the function f is not known.
» An alternative formulation uses a finite divided difference to approximate the (n+1)™ derivative.
Ry = ¢, X, X1 5eee s Xl (X=X (X=X ). (X=X,
+ But this includes f(x) which is not known.
+ Error can be predicted if an additional data point (x,,.4) is availbale
Ry = fIXp 1, Xnr Xpog reee s Xl (X=X (X —X%1) ... (x—X,)

which is nothing but f,,(x) - f,(x)



Newton’s Interpolating Polynomials for Equally Spaced Data

« If the data points are equally spaced and in ascending order, that is,

(Xor Yo) r (X0 +hrye) s (Xg+2h,yy), «nn ¢ (X +nh, yp)
finite divided difference simplify.

f(xy)-f(xq) _ Af(xq)

flx1,%0]= X, —Xg h
f(x3) —flx;)  f(x;)-fl(xg) .
X5 —-X Xy -X f(x,)-2f(x f(x Af(x
f[Iz;KnIu] _ 2 1 1 0 _ ( 1] {11)"' ( ﬂ]z (lﬂ)
X, =X 2h 2h
n
oringeneral f[X,,X;_1rXg] _ AT (xo)
n! h"

where Afn(x,) is the nth forward difference.

» With this notation Newton's DD Interpolating polynomials simplify to

f(X) = f(xg) + Af(Xg) o + A(Xp) a(e-1) /2! + ...+ A(Xg) afe-1)---(a-n+1)/nl + R,

wherea = (x-Xg)/h and R, =fM*)(E)hn*tlg(a-1)... (a-n)/ (n+1)!

* This is called the forward Newton-Gregory formula.




Lagrange Interpolating Polynomials

» It is a reformulation of Newton's Interpolating Polynomials.

S N X -—X;
fo(x) = Y Li0)f(x;)  where  L;(x)=]] ]
i=0 ]=“ Ii -_ x]
J=1
. —_ i . X=Xy X-Xg,
For n=1 (linear): f;(x) = e f(xg) + S f(xy)

. _-. _ (x—-xy )(x-x;) (x—xg)(x-x;) (x—xg)(x-%;)
For n=2: f2(x) (xg — x1 )(xg - lz)f(xn)+ (xq —xp)(x; - Iz)f(xl)+ (x3 —xp)(x; - xl)f(xl)

« To generalize, nth order polynomial is the summation of (n+1) nth order polynomials.

« Each of these nth order polynomials have a value of 1 at one of the data points and have values of 0
at all other data points.

* This is due to the following property of Lagrange functions L;(x) = { 1 at x=x

0 at all other data points

Lo(X) f(xp) L, (x) f(x,) L,(x) f(x3) f(x)

* ¢
1 |
1 I
| I
1 1
I I

+ +

|
|
|
" 1
|
|
I 1
Xg X; X



Example 31:

X f(x) Calculate f(4) using Lagrange Interpolating Polynomials
1 | 4.75 (a) of order 1

2 | 4.00 (b) of order 2

3 [ 525 (c) of order 3

5 | 19.75

6 | 36.00

(a) Linear interpolation. Selectx; =3, %3 =5
fi(x) = Lo(x) f(xg) + Ly(x) f(x;) = (x-5)/(3-5) 5.25 + (x-3)/(5-3) 19.75
f(4) ~ 12.5

(b) Quadratic interpolation. Selectxyg =2, x4 =3, X; =5
fa(x) = Lo(x) f(Xp) + La(x) f(xq) + La(x) f(x2)
= (x-3)(x-5)/(2-3)(2-5) 4.00 + (x-2)(x-5)/(3-2)(3-5) 5.25 + (x-2)(x-3)/(5-2)(5-3) 19.75
f(4) ~ 10.5

Exercise 30: Solve part (b) using the last three points. Also solve part (c).



Spline Interpolation

« We learned how to interpolate between n+1 data points using nth order polynomials.

» For high number of data points (typically n > 6 or 7), high order polynomials are necessary, but
sometimes they suffer from oscillatory behavior.

actual function

F's F 3

| |
interpolation /"/_\ /'/\}
fuiitij-? —[\/

» Instead of using a single high order polynomial that passes through all data points, we can use
different lower order polynomials between each data pair.

L 2

» These lower order polynomials that pass through only two points are called splines.

» Third order (cubic) splines are the most preferred ones.

&

first order splines : ;‘

L J



Linear Splines:

» Given a set of ordered data points, each two point can be connected using a straight line.

f(x) f(x) = f(xg) + mg(x - %) for xg<x<x
f(x) = f(xq) + my(x - %) for x; <x<x%,

f(x) = f(xy) + my(x - %) for x; <X <X

where the slopes are m; = [f(X;41) — f(X%:)] / (X541 - %)

» Functions are not continuous at the interior points.

Quadratic Splines:

» Every pair of data points are connected using quadratic functions.

a,x2+byx+c,
2
9] aecrbrca / A+ DXy » For n+1 data points, there are n splines
! \ and 3n unknown constants.
: ; 0/? » We need 3n equations to solve for them.
o ; Er
X0 X1 X2 Xp-1 Xn



Quadratic Splines (cont'd):

* These 3n equations are

» The first and last functions must pass through the end points (2 equations).

a; Xg2 + by Xg + ¢ = (%)

a, X,2 + b, x, + ¢, = f(x,)

» The function values must be equal at interior points (2n-2 equations).

» First derivatives must be equal at the interior points (n-1 equations).

31 %12 + by X + G = f(Xiy) forl = 2 to n
3; X2 + by X + G = (%)

» This makes a total of 3n-1 equations. One more equation is necessary and we need to make an
arbitrary choice. Among many possibilities we will use the following,

» Take the second derivative

a]_:D

at the first point to be zero (1 equation).
i.e. first two points are connected with a straight line.

* Solve this set of 3n linear algebraic equations with any of the methods that we learned.



Cubic Splines:
» For n+1 points, there will be n intervals and for each interval there will be a 3" order polynomial

a X +bx2+¢x+d fori=1ton

« Totally there are 4n unknowns. They can be solved using the following equations
» The first and last functions must pass through the end points (2 equations).
» The function values must be equal at interior points (2n-2 equations).
» First derivatives must be equal at the interior points (n-1 equations).
» Second derivatives must be equal at the interior points (n-1 equations).
» This makes a total of 4n-2 equations. Two extra equations are (other choices are possible)

» Second derivatives at the end points are zero (2 equations).

« Setting up and solving 4n equations is costly. There is another way of constructing cubic splines that
results in only n-1 equations in n-1 unknowns. See pages 502-503 of the book.



Example 32:

Develop quadratic splines for these data points and predict f(3.4) and f(2.2)

x | f(x)
1 1 f(x) a;x2+ b X + ¢
2 [ s !
25 | 7 S
3 | 8 L
2 - B X
2 3

Xg=1 2.5

» There are 5 points and n=4 splines. Totally there are 3n=12 unknowns. Equations are

 End points: a; 12+ b;j1+¢; =1 , 84942+ b,4+c,=2

e Interior points: a;22+b;2+¢; =5 , 822+ b,2+c¢,=5
8,252+ b25+¢c,=7, a3252+by25+¢c3=7
a;32+b;3 +¢c;=8 , 8432+ b;3+c,=8

» Derivatives at the interior points: 23,2+ b, = 2a,2+ b,
2a,2.5 + b, =2a;2.5+ b,
2333"‘ b3= 2343+ b.q

» Arbitrary choice for the missing equation: a; =0



Example 32 (cont'd):

» a,=0 is already known. Solve for the remaining 11 unknowns.

11 0 0 0 0 O0 0 0 0 0] (b)) 1) b, ) 4
00 0O O O O O 0 16 4 1| |c 2 c, -3
21 0 0 0 0 0 0 0 0 ofla 5 a, 0
00 4 2 1 0 0 0 0 0 0 |b 5 b, 4
00625251 0 0 0 0 0 0| | 7 c, -3
00 0 O 0625251 0 0 0| {a,} =47} o a,b=4-4
00 0 O0 0 9 3 1 0 0 0| |b, 8 b, 24
00 0 O 0 O ©O0 0 9 3 1| |c 8 C, -28
10 -4 -10 0 0 0 0 o0 o0 |a, 0 a, -6
00 5 1 0 -5 -10 0 0 0| |b, 0 b, 36
00 0 0 0 6 1 0-6 -10] [c,] 0) c, | 46

» Equations for the splines are
1stspline: f(x) =4x-3 (Straight line.)
2M gpline: f(x) = 4x—3 (Same as the 1%, Coincidence)
3rd spline: f(x) = -4x2 + 24x — 28
4th gpline: f(x) = -6x2 + 36x — 46
« To predict f(3.4) use the 4th spline. (3.4)
To predict f(2.2) use the 2nd spline. f(2.2)

-6 (3.4)2 + 36 (3.4) - 46 = 7.04
4(2.2)-3 = 5.8
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