
CH.3 TORSION
Part I



Objectives

• The concept of torsion in structural members and machine parts

• Shearing stresses and strains in a circular shaft subject to torsion

• Angle of twist in terms of the applied torque, geometry of the shaft, 
and material

• Torsional deformations to solve indeterminate problems

• Design shafts for power transmission

• Analyze torsion for noncircular members



• Members in torsion are encountered in many engineering applications. The most common
application is provided by transmission shafts, which are used to transmit power from one
point to another. These shafts can be either solid or hollow.



• The system consists of a turbine A and an electric generator B connected by a transmission
shaft AB. Breaking the system into its three component parts, the turbine exerts a twisting
couple or torque T on the shaft, which then exerts an equal torque on the generator. The
generator reacts by exerting the equal and opposite torque T’ on the shaft, and the shaft
reacts by exerting the torque T’ on the turbine.



Circular Shafts in Torsion
The Stresses in a Shaft

• The free-body diagram of portion BC of the shaft must include

the elementary shearing forces 𝑑𝐹, which are perpendicular to

the radius of the shaft. These arise from the torque that portion

AC exerts on BC as the shaft is twisted.

• The conditions of equilibrium for BC require that the system of

these forces be equivalent to an internal torque T, as well as

equal and opposite to T’.



• Denoting the perpendicular distance 𝜌 from the force 𝑑𝐹 to

the axis of the shaft and expressing that the sum of the

moments of the shearing forces 𝑑𝐹 about the axis of the

shaft is equal in magnitude to the torque T, write

න𝜌𝑑𝐹 = 𝑇

• Since 𝑑𝐹 = 𝜏𝑑𝐴, where 𝜏 is the shearing stress on the 

element of area 𝑑𝐴, you also can write

න𝜌(𝜏𝑑𝐴) = 𝑇



• While these equations express an important condition that must be satisfied by the

shearing stresses in any given cross section of the shaft, they do not tell us how these

stresses are distributed in the cross section.

• The actual distribution of stresses under a given load is statically indeterminate (i.e., this

distribution cannot be determined by the methods of statics).

• However, it was assumed in Chapter 1 that the normal stresses produced by an axial

centric load were uniformly distributed, and this assumption was justified in Chapter 2,

except in the neighborhood of concentrated loads.

• A similar assumption with respect to the distribution of shearing stresses in an elastic shaft

would be wrong. Withhold any judgement until the deformations that are produced in the

shaft have been analyzed.



• Shear cannot take place in one plane only. Consider the very small element of shaft shown in 

figure. The torque applied to the shaft produces shearing stresses τ on the faces perpendicular 

to the axis of the shaft. However, the conditions of equilibrium require the existence of equal 

stresses on the faces formed by the two planes containing the axis of the shaft. That such 

shearing stresses actually occur in torsion can be demonstrated by considering a “shaft” made 

of separate slats pinned at both ends to disks.



• If markings have been painted on two adjoining slats, it is observed that the slats will slide with

respect to each other when equal and opposite torques are applied to the ends of the “shaft”.

While sliding will not actually take place in a shaft made of a homogeneous and cohesive

material, the tendency for sliding will exist, showing that stresses occur on longitudinal planes

as well as on planes perpendicular to the axis of the shaft.



• Consider a circular shaft attached to a fixed support at one end.

If a torque 𝑇 is applied to the other end, the shaft will twist,

with its free end rotating through an angle 𝝓 (phi) called the

"angle of twist".

• Within a certain range of values of 𝑇, the angle of twist 𝝓 is

proportional to 𝑇. Also, 𝜙 is proportional to the length 𝐿 of the

shaft. In other words, the angle of twist for a shaft of the same

material and same cross section, but twice as long, will be

twice as large under the same torque 𝑇.

Deformations in a Circular Shaft



• When a circular shaft is subjected to torsion, every cross section 

remains plane and undistorted. In other words, while the various 

cross sections along the shaft rotate through different amounts, 

each cross section rotates as a solid rigid slab.

• This property is characteristic of circular shafts, whether solid or 

hollow—but not of members with noncircular cross section. For 

example, when a bar of square cross section is subjected to 

torsion, its various cross sections warp and do not remain plane.



• Detaching from the shaft a cylinder of radius 𝜌, consider the small square 

element formed by two adjacent circles and two adjacent straight lines 

traced on the surface before any load is applied. As the shaft is subjected 

to a torsional load, the element deforms into a rhombus.

• Here the shearing strain 𝛾 in a given element is measured by the change 

in the angles formed by the sides of that element. Since the circles 

defining two of the sides remain unchanged, the shearing strain 𝛾 must 

be equal to the angle between lines AB and A’B.

Shearing Strains



• Figure shows that, for small values of 𝛾, the arc length AA’ is 

expressed as 𝐴𝐴’ = 𝐿𝛾. But since 𝐴𝐴’ = 𝜌𝜙, it follows that

𝐿𝛾 = 𝜌𝜙 𝑜𝑟 𝛾 =
𝜌𝜙

𝐿

• where 𝛾 and 𝜙 are in radians.

• This equation shows that the shearing strain 𝛾 at a given point of a 

shaft in torsion is proportional to the angle of twist 𝜙. It also shows 

that 𝛾 is proportional to the distance 𝜌 from the axis of the shaft to 

that point. Thus, the shearing strain in a circular shaft varies linearly 

with the distance from the axis of the shaft.



• The shearing strain is maximum on the surface of the shaft, 

where 𝜌 = 𝑐.

𝛾𝑚𝑎𝑥 =
𝑐𝜙

𝐿

• Eliminating 𝜙 from 𝛾 =
𝜌𝜙

𝐿
 and 𝛾𝑚𝑎𝑥 =

𝑐𝜙

𝐿
, the shearing 

strain 𝛾 at a distance 𝜌 from the axis of the shaft is

𝛾 =
𝜌

𝑐
𝛾𝑚𝑎𝑥



• When the torque 𝑇 is such that all shearing stresses in the shaft remain below the yield 

strength 𝜏𝑦, the stresses in the shaft will remain below both the proportional limit and the 

elastic limit. Thus, Hooke’s law will apply, and there will be no permanent deformation. 

Recalling Hooke’s law for shearing stress and strain

𝜏 = 𝐺𝛾

• where 𝐺 is the modulus of rigidity or shear modulus of the material. Multiplying both 

members of 𝛾 =
𝜌

𝑐
𝛾𝑚𝑎𝑥 by 𝐺

𝐺𝛾 = 𝐺
𝜌

𝑐
𝛾𝑚𝑎𝑥 𝑜𝑟

Stresses in the Elastic Range

𝜏 =
𝜌

𝑐
𝜏𝑚𝑎𝑥



• This equation shows that, as long as the yield strength (or proportional limit) is not 
exceeded in any part of a circular shaft, the shearing stress in the shaft varies linearly with 
the distance 𝜌 from the axis of the shaft. 

𝜏𝑚𝑖𝑛 =
𝑐1
𝑐2
𝜏𝑚𝑎𝑥



• The sum of the moments of the elementary forces exerted on any cross section of the shaft must 

be equal to the magnitude 𝑇 of the torque exerted on the shaft:

න𝜌(𝜏𝑑𝐴) = 𝑇

• Substituting shearing stress formula 𝜏 =
𝜌

𝑐
𝜏𝑚𝑎𝑥

𝑇 = න𝜌𝜏𝑑𝐴 =
𝜏𝑚𝑎𝑥

𝑐
න𝜌2𝑑𝐴

• The integral in the last part represents the polar moment of inertia 𝐽 of the cross section with 

respect to its center O. Therefore,

𝑑𝐹 = 𝜏𝑑𝐴

𝜏𝑚𝑎𝑥 =
𝑇𝑐

𝐽
Max. shearing stress
on circular shaft𝑇 =

𝜏𝑚𝑎𝑥

𝑐
𝐽 𝑜𝑟



• Substituting for 𝜏𝑚𝑎𝑥 from 𝜏𝑚𝑎𝑥 =
𝑇𝑐

𝐽
 into 𝜏 =

𝜌

𝑐
𝜏𝑚𝑎𝑥, the shearing stress at any distance 

𝜌 from the axis of the shaft is

• The torsion formulas were derived for a shaft of uniform circular cross section subjected 
to torques at its ends.

𝜏 =
𝑇𝜌

𝐽

Shearing stress at any
distance on circular shaft



Sample Problem 3.11

Knowing that each of the shafts AB, BC, and CD consist of 
a solid circular rod, determine (a) the shaft in which the 
maximum shearing stress occurs, (b) the magnitude of 
that stress.



Sample Problem 3.11



Sample Problem 3.19

The solid rod AB has a diameter dAB = 60 mm and is 
made of a steel for which the allowable shearing 
stress is 85 MPa. The pipe CD, which has an outer 
diameter of 90 mm and a wall thickness of 6 mm, is 
made of an aluminum for which the allowable 
shearing stress is 54 MPa. Determine the largest 
torque T that can be applied at A.





Sample Problem 3.15

The allowable shearing stress is 15 ksi in the 1.5-in.-diameter 
steel rod AB and 8 ksi in the 1.8-in.-diameter brass rod BC. 
Neglecting the effect of stress concentrations, determine the 
largest torque T that can be applied at A.



Sample Problem 3.7

The solid spindle AB is made of a steel with an allowable 
shearing stress of 12 ksi, and sleeve CD is made of a brass 
with an allowable shearing stress of 7 ksi. Determine (a) the 
largest torque T that can be applied at A if the allowable 
shearing stress is not to be exceeded in sleeve CD, (b) the 
corresponding required value of the diameter ds of spindle 
AB.
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