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3.1. INTRODUCTION

• Finding the root of an equation 𝑓 𝑥 or solving that equation means determining the x values 

that make the equation zero. For this reason, the roots of equations are sometimes called the 

zeros of these equations.

• We know how to find the roots of 2nd degree polinomial function

by using the equation

𝑓 𝑥 = 𝑥 𝑥 =?



3.2. FINDING ROOTS OF EQUATIONS

• However, there are many complex equations whose roots we cannot easily find analytically. 

In such cases, numerical methods can be used as powerful alternatives in finding the roots 

of equations.

• Numerical methods commonly used in finding the roots of equations can be examined in two 

groups. These are: Bracketing methods and open methods.

Bracketing methods:

• Bisection Method

• False-Position Method 

Open methods:

• One-point Iteration Method

• Newton-Raphson Method

• Secant Method 



3.3. Bracketing Methods

• These techniques deal with techniques that take use of the fact that a function frequently 

changes sign close to a root. 

• And these techniques are called bracketing methods because two initial guesses for the root 

are required. 

• As the name implies, these guesses must “bracket,” or be on either side of, the root.

• The particular methods described herein employ different strategies to systematically reduce 

the width of the bracket and, hence, focus on the correct answer.



3.3.1. General Idea of Bracketing Methods

RULE 1: IF 𝑓 𝑥𝑙 ∗ 𝑓 𝑥𝑢 < 0 THEN

there are odd number of roots.

RULE 2: IF 𝑓 𝑥𝑙 ∗ 𝑓 𝑥𝑢 > 0 THEN

there are: (i) even number of roots,

(ii) no roots.

VIOLATIONS:

(i) multiple roots,

(ii) discontinuities.
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3.3.2. THE BISECTION METHOD

The bisection method is one type of incremental search method in which the interval is always 

divided in half. If a function changes sign over an interval, the function value at the midpoint is 

evaluated. 

• Step 1: Choose two initial estimations, 𝑥𝐿𝑂𝑊𝐸𝑅 (𝑥𝑙) and

𝑥𝑈𝑃𝑃𝐸𝑅 (𝑥𝑢).

• They should bracket the root, i.e.

𝑓(𝑥𝑙) ∗ 𝑓(𝑥𝑢) < 0
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𝑥𝑢



Step 2: Estimate the root as a midpoint of this interval

𝒙𝒓 =
(𝒙𝒍+𝒙𝒖)

𝟐

Step 3: Determine the interval which contains the root,

(a) IF 𝑓(𝑥𝑙) ∗ 𝑓(𝑥𝑟) < 0 THEN the root is between 𝑥𝐿 and 𝑥𝑟 ,

Therefore, set 𝑥𝑢= 𝑥𝑟 and RETURN to step 2.

(b) IF 𝑓(𝑥𝑙) ∗ 𝑓 𝑥𝑟 > 0 THEN the root is between 𝑥𝑟 and 𝑥𝑈.

Therefore, set 𝑥𝑙= 𝑥𝑟 and RETURN to step 2.

(c) IF 𝑓(𝑥𝑙) ∗ 𝑓 𝑥𝑟 = 0, the root is equals 𝑥𝑟; TERMINATE

the computation
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Termination Criteria and Error Estimates

We need a termination criteria to end the iteration. Here, an approximate percent relative error 𝜀𝑎

can be calculated as:

𝜀𝑎 =
𝑥𝑟
𝑛𝑒𝑤 − 𝑥𝑟

𝑜𝑙𝑑

𝑥𝑟
𝑛𝑒𝑤 100%

When the approximate percent relative error 𝜀𝑎 falls below the specified percent relative error 𝜀𝑠 or

tolerance, we could terminate the bisection method.



Example 3.1: Find the square root of 11. (Tolerance value: |𝜀𝑠| = 0.5%)

𝑥2 = 11 → 𝑓 𝑥 = 𝑥2 − 11 (𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 3.31662479)

𝐂𝐡𝐨𝐨𝐬𝐞 𝐢𝐧𝐢𝐭𝐢𝐚𝐥 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐬: 32 = 9 < 11 and 42 = 16 > 11 → 𝒙𝒍 = 𝟑 and 𝒙𝒖 = 𝟒

𝟏𝐬𝐭 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧: 𝑥𝑟 =
𝑥𝑙+ 𝑥𝑢

2
=

3+4

2
→ 𝑥𝑟 = 3.5 and 𝑓 3.5 = 3.52 − 11 = 1.25

𝑓 𝑥𝑙 ∗ 𝑓 𝑥𝑟 = −2 ∗ 1.25 → −2.5 < 0 (root is between 𝑥𝑙 and 𝑥𝑟)

SET 𝑥𝑢 = 𝑥𝑟=3.5 and CONTINUE to iterate. 3

43.5

-2

5

1.25



𝑥𝑟 =
3.25+3.5

2
→ 𝑥𝑟 = 3.375 and 𝑓 3.375 = 0.390625

3.25

3.53.375

1.25

0.3906

𝟑𝐫𝐝 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧:

𝑓 𝑥𝑙 ∗ 𝑓 𝑥𝑟 = −0.4375 ∗ 0.390625 = −0.17089 < 0
(root is between 𝑥𝑙 and 𝑥𝑟)

2nd 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧:

SET 𝑥𝑢 = 𝑥𝑟 = 3.375 and CONTINUE to iterate.

𝑓 𝑥𝑙 ∗ 𝑓 𝑥𝑟 = −2 ∗ −0.4375 = 0.875 > 0
(root is between 𝑥𝑟 and 𝑥𝑢)

SET 𝑥𝑙 = 𝑥𝑟 = 3.25 and CONTINUE to iterate.

3.5

3 3.25

−2

−0.4375

𝑥𝑟 =
3+3.5

2
→ 𝑥𝑟 = 3.25 and 𝑓 3.25 = 3.252 − 11 = −0.4375

𝒙𝒍 = 𝟑, 𝒙𝒖 = 𝟑. 𝟓

𝒙𝒍 = 𝟑. 𝟐𝟓, 𝒙𝒖 = 𝟑. 𝟓

1.25

−0.4375



𝑥𝑟 =
3.3125+3.375

2
→ 𝑥𝑟 = 3.34375 and 

𝑓 3.34375 = 0.18066

3.3125

3.3753.34375

1.25

0.18066

𝟓𝐭𝐡 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧:

−0.027343 ∗ 0.18066 = −0.01068 < 0
(root is between 𝑥𝑙 and 𝑥𝑟)

4𝐭𝐡 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧:

SET 𝑥𝑢 = 𝑥𝑟 = 3.34375 and CONTINUE to iterate.

−0.4375 ∗ −0.027343 = 0.011963 > 0

(root is between 𝑥𝑟 and 𝑥𝑢)

SET 𝑥𝑙 = 𝑥𝑟 = 3.3125 and CONTINUE to iterate.

3.375

3.25

−2

−0.4375

𝑥𝑟 =
3.25+3.375

2
→ 𝑥𝑟 = 3.3125

and 𝑓 3.3125 = 3.31252 − 11 = −0.027343

𝒙𝒍 = 𝟑. 𝟐𝟓, 𝒙𝒖 = 𝟑. 𝟑𝟕𝟓

𝒙𝒍 = 𝟑. 𝟑𝟏𝟐𝟓, 𝒙𝒖 = 𝟑. 𝟑𝟕𝟓

1.25

−0.027343



𝑥𝑟 =
3.3125+3.34375

2
→ 𝑥𝑟 = 3.32815 and 

𝑓 3.32815 = 0.076416

3.3125

3.34375

0.18066

0.076416

−0.027343 ∗ 0.076416 = −0.002089 < 0
(root is between 𝑥𝑙 and 𝑥𝑟)

6𝐭𝐡 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧: 𝒙𝒍 = 𝟑. 𝟑𝟏𝟐𝟓, 𝒙𝒖 = 𝟑. 𝟑𝟒𝟑𝟕𝟓

−0,027343

3.32815



Iteration 𝒙𝒍 𝒙𝒓 𝒙𝒖 𝒇(𝒙𝒍) 𝒇(𝒙𝒓) 𝒇(𝒙𝒍)𝒇(𝒙𝒓) |𝜺𝒂| (%)

1 3 3.5 4 -2 1.25 -2.5 -

2 3 3.25 3.5 -2 -0.4375 0.875 7.69

3 3.25 3.375 3.5 -0.4375 0.390625 -0.17089 3.70

4 3.25 3.3125 3.375 -0.4375 -0.027343 0.011963 1.88

5 3.3125 3.34375 3.375 -0.027343 0.18066 -0.004942 0.93

6 3.3125 3.32815 3.34375 -0.027343 0.076582 -0.0020939 0.468

11 ≈ 3.32815 |𝜀𝑎| < |𝜀𝑠|



Example 3.2 Calculate root of following polynolmial

Finding the roots within the interval 3.75  ≤ x ≤ 5.00 to a relative accuracy as an 
absolute value between successive iterations of 0.01.

Check: f(x=3.75) = -6.82
f(x=5.00) = 42
fl x fu = -286.44 < 0





3.3.3. FALSE-POSITION METHOD

• Step 1: Choose two initial estimations, 𝑥𝐿𝑂𝑊𝐸𝑅 (𝑥𝑙) and

𝑥𝑈𝑃𝑃𝐸𝑅 (𝑥𝑢).

• They should bracket the root, i.e.

𝑓(𝑥𝑙) ∗ 𝑓(𝑥𝑢) < 0

𝑥𝑙
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𝑥𝑢
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• Step 2: Using similar triangles, the intersection of the 

straight line with the x axis can be estimated as

𝑥𝑢

𝑥𝑙

𝑓(𝑥𝑙)

𝑓(𝑥𝑢)

𝑓(𝑥𝑙)

𝑓(𝑥𝑢)

𝑥𝑟 = 𝑥𝑢 −
𝑓 𝑥𝑢 𝑥𝑙 − 𝑥𝑢
𝑓 𝑥𝑙 − 𝑓 𝑥𝑢

• Determine the interval which contains the root:

IF 𝑓(𝑥𝑙) ∗ 𝑓(𝑥𝑟) < 0 root is between 𝑥𝑙 and 𝑥𝑟

ELSE root is between 𝑥𝑟 and 𝑥𝑢

𝑥𝑟 =
𝑥𝑢𝑓 𝑥𝑙 − 𝑥𝑙𝑓 𝑥𝑢
𝑓 𝑥𝑙 − 𝑓 𝑥𝑢

or



3.3.3. FALSE-POSITION METHOD

• Step 3: Estimate a new root in this interval,

Stop when the specified tolerance is reached.

𝒙𝒓 𝑥𝑢

𝑥𝑙

𝑓(𝑥𝑙)

𝑓(𝑥𝑢)

• False-position method always converges to the true root,

• 𝑓(𝑥𝑙) ∗ 𝑓(𝑥𝑢) < 0 is true if the interval has odd number of roots,

not necessarily one root.

• The false-position method generally converges faster than the

bisection method.



Example 3.2: Find the square root of 11 by using false-position method. (Tolerance value: |𝜀𝑠| = 0.5%)

𝑥2 = 11 → 𝑓 𝑥 = 𝑥2 − 11 (𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 3.31662479)

𝐂𝐡𝐨𝐨𝐬𝐞 𝐢𝐧𝐢𝐭𝐢𝐚𝐥 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐬: 32 = 9 < 11 and 42 = 16 > 11 → 𝒙𝒍 = 𝟑 and 𝒙𝒖 = 𝟒

𝟏𝐬𝐭 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧: 𝑥𝑟 = 𝑥𝑢 −
𝑓 𝑥𝑢 𝑥𝑙−𝑥𝑢

𝑓 𝑥𝑙 −𝑓 𝑥𝑢
→ 𝑥𝑟 = 3.28571429 and 

𝑓 3.28571429 = 3.285714292 − 11 = −0.2040817

𝑓 𝑥𝑙 ∗ 𝑓 𝑥𝑟 = −2 ∗ −0.2040817 → 0.408163 > 0 (root is between 𝑥𝑟 and 𝑥𝑢)

SET 𝑥𝑙 = 𝑥𝑟= 3.28571429 and CONTINUE to iterate.
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𝟐𝐧𝐝 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧: 𝒙𝒍 = 𝟑. 𝟐𝟖𝟓𝟕𝟏𝟒𝟐𝟗, 𝒙𝒖 = 𝟒

𝑥𝑟 = 𝑥𝑢 −
𝑓 𝑥𝑢 𝑥𝑙−𝑥𝑢

𝑓 𝑥𝑙 −𝑓 𝑥𝑢
→ 𝑥𝑟 = 3.313725 and 

𝑓 3.313725 = 3.3137252 − 11 = −0.019227

𝑓 𝑥𝑙 ∗ 𝑓 𝑥𝑟 = −0.2040817 ∗ −0.019227

→ 0.00392 > 0 (root is between 𝑥𝑟 and 𝑥𝑢)

SET 𝑥𝑙 = 𝑥𝑟= 3.313725 and CONTINUE to iterate.

4

5

−0.2040817

𝑓(𝑥)

𝑥

−0.019227

4

5

𝑓(𝑥)

𝑥

−0.019227

3r𝐝 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧: 𝒙𝒍 = 𝟑. 𝟑𝟏𝟑𝟕𝟐𝟓, 𝒙𝒖 = 𝟒

𝑥𝑟 = 𝑥𝑢 −
𝑓 𝑥𝑢 𝑥𝑙−𝑥𝑢

𝑓 𝑥𝑙 −𝑓 𝑥𝑢
→ 𝑥𝑟 = 3.3163543 and 

𝑓 3.3163543 = 3.31635432 − 11 = −0.00179415

𝑓 𝑥𝑙 ∗ 𝑓 𝑥𝑟 = −0.019227 ∗ −0.00179415

→ 0.0000344961 > 0 (root is between 𝑥𝑟 and 𝑥𝑢)

SET 𝑥𝑙 = 𝑥𝑟=3.3163543 and CONTINUE to iterate.



4

5

𝑓(𝑥)

𝑥

4th iteration: 𝒙𝒍 = 𝟑. 𝟑𝟏𝟔𝟑𝟓𝟒𝟑, 𝒙𝒖 = 𝟒

𝑥𝑟 = 𝑥𝑢 −
𝑓 𝑥𝑢 𝑥𝑙−𝑥𝑢

𝑓 𝑥𝑙 −𝑓 𝑥𝑢
→ 𝑥𝑟 = 3.31659949 and 

𝑓 3.31659949 = 3.316599492 − 11 = −0.0001678

𝑓 𝑥𝑙 ∗ 𝑓 𝑥𝑟 = −0.00179415∗ − 0.0001678

→ 0.0000344961 > 0 (root is between 𝑥𝑟 and 𝑥𝑢)

SET 𝑥𝑙 = 𝑥𝑟=3.3163543 and CONTINUE to iterate.

−0.00179415



Iteration xl xr xu f(xl) f(xu) f(xr) f(xl)f(xr) |εa| (%)

1 3 3.285714 4 -2 5 -0.2040816 0.4081632653 --

2 3.285714 3.313725 4 -0.20408 5 -0.0192234 0.0039231379 0.84531

3 3.313725 3.316354 4 -0.01922 5 -0.0017969 0.0000345424 0.07926

4 3.316354 3.316599 4 -0.0018 5 -0.0001678 0.0000003016 0.00741

5 3.316599 3.316622 4 -0.00017 5 -0.0000157 0.0000000026 0.00069

6 3.316622 3.316625 4 -1.6E-05 5 -0.0000015 0.0000000000 0.00006

• Note that false-position method converged faster than the bisection method. 



• A plot of the function is always helpful.

• To determine the number of all roots, if there are any.

• to determine whether the roots are multiple or not.

•  to determine whether to method converges to the desired root.

• to determine the initial guesses.

• Incremental search technique can be used to determine the initial guesses.

• Start from one end of the region of interest.

• Evaluate the function at specified intervals.

• If the sign of the function changes, than there is a root in that interval.

• Select your intervals small, otherwise you may miss some of the roots. But if they are too small, 

incremental search might become too costly.

• Incremental search, just by itself, can be used as a root finding technique with very small intervals 

(not efficient).

Notes on Bracketing Methods



Problem 5.17

You are designing a spherical tank to hold water for a small village in a 

developing country. The volume of liquid it can hold can be computed as

where V = volume [m3], h = depth of water in tank [m], and R= the tank 

radius [m]. If R = 3 m, to what depth must the tank be filled so that it 

holds 30 m3? Use three iterations of the false-position method to 

determine your answer. Determine the approximate relative error after

each iteration. Employ initial guesses of 0 and R.



NEXT WEEK
ROOTS OF EQUATIONS

Open Methods
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