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4.1 INTRODUCTION

* In previous lecture, we determined the value x that satisfied a single equation, f (x) = 0. Now, we deal
with the case of determining the values x,, x,, . . ., x,, that simultaneously satisfy a set of equations

fl(x1!x23‘--gxn):()

. fZ(xlvxzj---,xn):O
(General set of equations) _ |

fulxt,x2,...,x,)=0

* Such systems can be either /inear or nonlinear. In this section, we deal with linear algebraic equations

that are of the general form
anxy +apxz + -+ apx, = b

A1X1 + apxy + - -+ dgux, = by

Ap1X1] + Ap2X2 + - -+ AppXy = bn

where the a’s are constant
coefficients, the b’s are
constants, and n 1s the number
of equations.



anxy +apx, + -+ aypx, = by

. : : : : :
The system of linear equations given can be represented in matrix 21X] 4= @pXy 4+ o 4 any X, = by

form:

[Al{x} = {b}

a,1X + dy2X2 + -+ AynXy = bn

where [A] is n x n Coefficient matrix

{x} is n x 1 Unknown vector
{b} is n x 1 Right-hand side (RHS) vector

* In this section, first some reminders about matrices will be made and the types of matrices and matrix
operations will be briefly mentioned.
* Then, numerical methods used in solving sets of linear equations will be discussed.



4.2 Matrix

* A matrix consists of a rectangular array of elements

Column 3
represented by a single symbol. l
: , _ . [ail a2 a3 ... Qaim |
* [A] is the shorthand notation for the matrix and a; designates 4y ay ay ... az, |<Row 2
an individual element of the matrix. (4] =
* A horizontal set of elements is called a row and a vertical set is
called a column. The first subscript I always designates the —Gnl dnz An3 ... Cnm
number of the row in which the element lies. The second n x m Matrix

subscript | designates the column.



Row Vector: Matrices with row dimension n = 1, such as Bl =1[b; by --- byl

C1

Column Vector: Matrices with column dimension n = 1, such as “2

IC] =

Cn

Square Matrix: Matrices where N = m are called square matrices. For example, a 4 by 4 matrix is

apy  diz a1z dig

1 dpz dz3 4
[4] =

31 diz a3z d3y

| d41 d42 d43 d4q

The diagonal consisting of the elements a,,, a,,, 855, and a,, 1s termed the principal or main diagonal of
the matrix.



4.2.1 Special Types of Square Matrix

5 1 27
* A symmetric matrix is one where a;; = a;; for all i’s and j’s. For example,[4] = | 1 3 7| isa3by
3 symmetric matrix. | 2 7T 8]

« A diagonal matrix is a square matrix where all elements off the main diagonal are equal to zero, as in

[A] =

Note that where large blocks of
elements are zero, they are left
blank.

* An identity matrix is a diagonal matrix where all elements on the main diagonal are equal to 1, as in

1
[A] =

1.

The symbol [/] 1s used to denote the identity matrix. The identity matrix has properties similar to unity.



An upper triangular matrix is one where all the elements below the

main diagonal are zero, as in

An lower triangular matrix is one where all the elements above the

main diagonal are zero, as in

A banded matrix has all elements equal to zero, except for a band

centered on the main diagonal:

[4]

[4] =

[4] =

ap

aii
azi

asy

| da

ail

azi

ajpz

ajzz

a2
as?

7

apz
azz

asz

a3
as3

as3

33

43

azs
(33

(43

(4
a4

34

a4 _

g _

(34

a4 _



4.2.2 Matrix Operations

Addition of two matrices, say, [4] and [B], 1s accomplished by adding corresponding terms in each
matrix. The elements of the resulting matrix [C] are computed,

c; =a;+b fori=1,2,...,nandj=1, 2, ..., m.
Similarly, the subtraction of two matrices, say, [£] minus [F], is obtained by subtracting
corresponding terms, as in

dij:eij_fij fori=1,2,...,nandj=1,2,..., m.
Addition and subtraction can be performed only between matrices having the same dimensions.
Both addition and subtraction are commutative:

[A] +[B] = [B] + [4]

Addition and subtraction are also associative, that 1s,

(4] + [B]) + [C]=[A] + ([B] + [C])



« The multiplication of a matrix [A] by a scalar g is obtained by multiplying every element of [A] by g,

as in
Cgan gaiz -+ A |
gdzy gdzz -+ Eday
[D] = glA4] =
| 80u1 8Awn2 -+ S0ym _

» The product of two matrices is represented as [C] = [A][B], where the elements of [C] are defined as

M
Cij = Z Hikbi'j
k=1

where n = the column dimension of [A] and the row dimension of [B]. That is, the C; element is
obtained by adding the product of individual elements from the ith row of the first matrix, in this case

[A], by the jth column of the second matrix [B]. Alnxm [Blmx: = [Claxi
L] ‘

* According to this definition, multiplication of two matrices can be Interior dimensions

are equal;

performed only if the first matrix has as many columns as the ulpller{ien
is possible
number of rows in the second matrix.

Exterior dimensions define
the dimensions of the result




. : 51 5 9
* Suppose that we want to multiply [X] by [Y ] to yield [Z ], [Z] = [X][Y] = [8 ﬁ:} [ ]

7 2
0 4
* A simple way to visualize the computation of [Z ] 1s to raise [Y ], as in

i) [5 9}
5 9 71 2
HH TR
3 1 |::> 17 — r3Ix5+1x7=22
[ X] — |:8 6:||: ? :|<—[Z] 6:| |: :|
0 4 4

U
BB
7] = FE 33} - ’

22
28 8 :|—>|:8><5-|—6><7=82 :|

S o0 |W

 — 1
o oo | W
P A=l



» If the dimensions of the matrices are suitable, matrix multiplication is associative,

((41[BDICT = [4I(BIICT)

* and distributive,

[AI([B] + [C]) = [4][B] + [4][C]

or

4]+ [BDIC] = [4][C] + [B][C]

* However, multiplication is not generally commutative:

[A][B] # [B][A]



* The transpose of a matrix involves transforming its rows into columns and its columns into rows.

app diz a3z dyy ayp dz1r dzr  dag
(4] = dz1 dpzy a3z a4 I:> [A]T _ ajp Az dz2 ag
azp dzz dzz dzy ayz dz3z  dz3z  d43

| A4l d42  d43 g4 | d14  dz4 dA3q A4 |

* In other words, the element &;; of the transpose is equal to the ;; element of the original matrix.

* The trace of a matrix 1s the sum of the elements on its principal diagonal. It is designated as tr [A] and

1s computed as i
ir [A] = Z d;;
i=1

« If a matrix [A] is square and nonsingular, there is another matrix [A]~!, called the inverse of [A], for
which
[AI[A] = [A]'[A] =1]

* The inverse of a two-dimensional square matrix can be represented simply by

[1_1]—1 — 1 azz —dj12
d11dzz — ajzdy) | —dzi il




* The determiant of a matrix is equal to the sum of the products of all elements in any row or column

by their cofactors.

a,, d;, 4 a,; a,; ayy

@, d;; dy a,; a,; sy

@iy Az Ui, s, asz s
N N

_ _ . ivk K+
det(4) = |A| =|a, a, a; - a; - a; - ay —ZﬂmMn:- (-1) _ZE.HMH(_ I)

i=f j=I

d;; d;; dg d a a

Ayyp Ay; Ayz; v Ay, d i a

Cofactor matrix M is the matrix composed of multiplication of the minors of 4 by (-1)"¥:



Example: Calculate the determinant and inverse of matrix A.

A=
We need the cofactor matrix C of 4 to find the inverse and determinant of matrix 4:
T 14 3 B ‘1 3 ‘1 41 T
3 4 1 4 1 3 _ _
C=—33 1 3 _‘13=_73 11 01
3 4 1 4 1 3 3 0 1
‘3 3‘ _ ‘1 3 1 3 B
L 14 3 1 3 1 41 .
13 5
4 3 3 3 3 3
det(4d)=1 4 3 =f3 4715 4 +f4 3 =7—-3-3=1 (Using 1st column elements)
3 4




* The final matrix manipulation that will have utility in our discussion i1s augmentation. A matrix is
augmented by the addition of a column (or columns) to the original matrix.

* For example, suppose that matrix 4 augmented with the column matrix B:

d11 Qg2 b11] a a : b
A = B = [ _ [F11 12 11]
[a21 azz‘ byq A [a21 Ay, by



4.3 Solving a Small (n < 3) Set of Equations
4.3.1 Graphical Method

* Consider a set of 2 equations
anxy + appxz = by
anx1 +apxz = by \ a1 X1 + Apxy = by

d1X1 + AXy = by

* Both equations can be solved for x,
_________ «— solution




Example: Use the graphical method to solve 3x1 + 2x; =18

—X1 + 2x0 = 2

Solve equations for x, and plot in x, - x, axes.

3
3x1 +2x2 =18 —— Ig:—§1'1+9
1
—x;1+2xp =2 — IE:E:{.I—'_]

The solution 1s the intersection of the two lines at X,=4 and
X,=3.

For n=3, each equation will be a plane on a 3D
coordinate system. Solution i1s the point where these
planes intersect.

* For n>3, graphical solution 1s not practical.

T2

Solution: x; = 4;x, = 3




Following figures represent the case that the graphical methods break down.

x2 A

(a) (b) ©)

Parallel lines = no solution Coinciding lines = infinite Very close to being singular
solutions = hard to 1dentify the solution



4.3.2 Cramer’s Rule

* Determinant of 2 by 2 system:

e Determinant of 3 by 3 system: ) —

dii
D =

az]

apl

azi

asg

a2

a2

a12
22
a32

= d11dy2 — d12d21
a3
dzp A3 azi
dz3 | = d11 — ajp
aszpy dss asy
ass

minors

| T

azi

az3 2?2

+ a3

asj

ass as2

Cramer’s Rule: Each unknown is calculated as a fraction of two determinants. The denominator is the

determinant of the system, D. The numerator is the determinant of a modified system obtained by

replacing the column of coefficients of the unknown being calculated by the right-hand-side (RHS) vector.



4.3.2 Cramer’s Rule

A11X1 T 12Xy T A13X3 =

For a 3x3 system: A21X1 + A2X + Ap3X3 =
A31X1 T A32Xy + A33X3 =

by ay; ag3 a1 by ags

b, a;; a3 a1 by ays

b; as; ass asz, bz ass

b
b,
b3

x]_: x2:

D D

Example: Use the Cramer’s rule to solve

[Al{x} = {b}

a;; Qi by

azy Qzz; b,

az; Az bs
X3 — D

0.3x; + 0.52x2 + x3 = —0.01

0.5x1 + x2 + 1.9x3 = 0.67
0.1x; + 0.3x2 + 0.9x3 = —0.44

0.3 0.52

The determinant D can be written as D=10.5 1

|
1.9

0.1 03 0.




0.3 0.52 1

D=105 1 1.9 =0.3(—0.07) — 0.52(0.06) + 1(0.05) = —0.0022

0.1 03 0.5

The minors are

1 1.9

A = 03 05|~ 1(0.5) — 1.9(0.3) = —0.07
0.5 1.9

Ar = 01 05|~ 0.5(0.5) — 1.9(0.1) = 0.06
0.5 1

Az = ‘0‘1 0'3‘ = 0.5(0.3) — 1(0.1) = 0.05

X] =

X7 =

X3 =

~0.01 052 1

067 1 1.9

—044 0.3 05| 0.03278
~0.0022 = o022 — Y

0.3 —0.01 1

0.5 067 1.9

0.1 —0.44 05 0.0649
~0.0022 = ooz = 0

0.3 052 —0.01

0.5 1 0.67

0.1 03 —044| —0.04356
~0.0022 = o002z ~ V8



4.3.3 Naive Gauss Elimination Method

L . anxy + appxz + aixs + - - + ap X, = by
* The approach is designed to solve a general set of n equations: e

azi1x1 + azxy + azxs + - - + agyxy = by

STEP 0 (Optional): Form the augmented matrix of [A[B].

STEP 1 Forward Elimination: Reduce the system to an upper  a,1x; + a,2x2 + a,3x3 + - - - + @, x, = by,

triangular system.
1. The initial step will be to eliminate the first unknown, x,, from the second through the nth equations.

2. Multiply the 1st egn. by a,,/a,; & subtract it from the 2nd equation. This is the new 2nd egn.
3. ..
4. Multiply the 1st eqgn. by a,/a;; & subtract it from the nth equation. This is the new nth eqn.

Important: In these steps the 1s¢ eqn 1s the pivot equation and a,, is the pivot element. Note that a division

by zero may occur if the pivot element 1s zero. Naive-Gauss Elimination does not check for this.



ai; 411 Qg A1n T (X1 by
!/ !/ !/
0 ajz aj ... ayl||x b, — .
- . 0 d a aar [z b=\ indicates that the system is
The modified system is 32 @33 - G3nf)7 3 modified once.
|0 a'yy ays . apnd \XnJ \b',,)

« Eliminate x, from 3rd to nth equations

A1 A1 Q11 e Qip T X)) (b1 )
! ! / !
0 ay a”23 aHZ" X2 b”2 " indicates that the system is
The modified system is 0 0  a'zz .. a'zp|; X3 r =1b"3 1  modified once.
0 ad',, a3 .. a2 ,,1\xn) \b"".)

» Repeat the last two procedure to unkonwns x5 to x,eliminated from 4th to nth equations

11 Q12 Q13 . Aip] (X1) (b1

At the end of the step 1 0 a2 Gz3 o Gan||X2 b,
0 0 aszzs .. azp|<X3p=<by; Primes are removed for clarity.

| 0 0 0 ... an,d\xy) \D,,)




STEP 2 Back Substitution: Find the unknowns starting from the last equation.

* Last equation involves only x.. Solve for it.

 Use this x,, in the (n-1)th equation and solve for x__ ;.

 Use all previously calculated x values in the 1st eqn and solve for x;.

Example: Use gauss elimination to solve the following system of equations.

Step 0: Construct augmented matrix

6
12
3
|—6

—2
—8
—13
4

= O OV DN

10

—18

16 7

26
—19

—34,

6x;-2x,+ 2x;+ 4x,= 16
12x, - 8x, + 6x;+ 10x, = 26
3x,-13x,+9x;,+ 3x,=-19
-6x; +4x, + x;- 18x, = -34



Step 1: Forward elimination

Eliminate x;

Eliminate X,

Eliminate X,

1 6

o o o o

o o o

12
3

|—6

o)

—2
—8

—13

4

—2

—4

—12
2

—2

W o NN

BSININ DN

Step 2: Back substitution

_ O O DN

oSO NN DN

_2%R,+R,
—%*R1+R3
R; + R,

_3*R2+R3
%*R2+R4

—2+R; +R,

. Pivot element

6 -2 2 4 | 167
o -4 2 2 | =6
0 -12 8 1 | =27
o 2 3 -14 | -18]
6 -2 2 4 | 16]
— 0O -4 2 2 | -6
o 0 2 -5 | -9
0 0 4 -13 | -21]
6 -2 2 4 | 167
— 0 -4 2 2 | -6
o 0 2 -5 | -9
o 0 0 -3 | -3
—3x4 = -3 x4 =1
ZX3_5x4=_9_>x3=_2
—4x, + 2x3 +2x4 = —6 0| Xy =

6x1 — 2x, + 2x3 + 4x, = 16 >|x1 = 3




PIVOTING

* Pivoting 1s the displacement of rows in the coefficient matrix so that the diagonal elements are maximized

in absolute value.

* Pivoting 1s employed to prevent division by zero, a pitfall that could cause the failure of the Naive Gauss

elimination method.

Example: Solve the following system using Gauss Elimination with pivoting.

2x,+x,=0

2x,+2x,+ 3x;+ 2x, = -2
4x,-3x,+ x,=-7

6x,+ x,-6x;-5x,= 6

: 0 2 0 1 0]
Step 0: Construct augmented matrix 2 2 3 9 _
4 -3 0 1 -7

6 1 -6 -5 6




0 2 0 1 | 07 Pivoting 6 1 —-6 -5 | 6]
2 2 3 2 | =2 R,and R, 2 2 3 2 | -2
4 -3 0 1 | -7 > 4 -3 0 1 | -7
6 1 -6 -5 | 6| 0 2 0 1 | O]
Step 1: Forward elimination
Eliminat 6] 1 —-6 -5 | 6] . _l.p LR 6 1 —6 -5 | 6 ]
minate X, 1, 2 3 2 | =2 37T _.]lo 16667 5 36667 | —4
4 -3 0 1 | =7 . _E*R1+R3 0 —3.6667 4 43333 | -11
o 2 0 1 | 0. 0 2 0 1 | 0
Pivoting R, and R,. Then, eliminate X,
6 1 -6 -5 | 6 oy 6 1 6 -5 | 6
0 —-3.6667 4 43333 | -11 * Zeee; FR2tR3 — |0 —3.6667 4 4.3333 | —11
0 16667 5 3.6667 | —4 ) <R, + R, 0 0 6.8182 5.6364 | —9.0001
0 5 0 1 0 3.6667 0 0 2.1818 3.3636 | —5.9999




Eliminate x,

6 1 6 -5 | 6 6 1 6 -5 | 6
0 -3.6667 4 43333 | -—11 L Z21818 5 p 0 -3.6667 4 43333 | 11
0 0 6.8182 5.6364 | —9.0001 68182 3 ' 4 0 0 6.8182 5.6364 | —9.0001
0 0 2.1818 3.3636 | —5.9999 0 0 0 1.5600 | —3.1199

Step 2: Backward substitution

1.56x, = —3.1199 -|x4 = —1.9999
6.8182x; + 5.6364x, = —9.0001 —|x3 = 0.33325
—3.6667x, + 4x3; +4.3333x, = —11 =/ x, = 1.0

6x, + x, + 6x3 —5x, = 6 -|x1 = —0.5




SCALING

* Scaling is to normalize the equations so that the maximum coefficient in every row is equal to 1.0. That
is, divide each row by the coefficient in that row with the maximum magnitude.

* It 1s advised to scale a system before calculating its determinant. This 1s especially important if we are
calculating the determinant to see if the system is 1ll-conditioned or not.

* Consider the following systems
2%, - 3x, =5 20x; - 30x, = 50
3.98x;, - 6x, =7 39.8x;, - 60x, = 70

* They are actually the same system. In the second one the equations are multiplied by 10.
* Determinant of the 1st system 1s 2(-6) — (-3)(3.98) = -0.06 , which 1s close to zero.
* Determinant of the 2nd system 1s 20(-60) — (-30)(39.8) = -6 , which is not that close to zero.

* So, 1s this system ill-conditioned or not?



4.3.4 LU Decomposition Method

The Gauss elimination method can essentially be expressed as follows using matrix notation.

Ax =B
A=P.L U

Here, P is the matrix expressing the row displacements during pivoting, L is the lower triangular matrix
consisting of the multipliers used during the zeroing of the columns, and U i1s the upper triangular matrix

reached in the Gauss elimination method.

'Elll ﬂ.lz ﬂ_lg an {11“- Lll U [} U ]_ Ulz U13 Ul'i‘l
(p1 Gpp dzz - G2n| _ La1 Lzz 0 0 0 1 Uy Usp
(133 Qzz Q33 .. dQap Laq L3z Las 0 o O 1 Uz

[Ap1 Apz Apz . Gpp _Lnl Lpa Lpz o Lppd 0 U U 1




-all ﬂlz {]_13 wan ﬂln' -Lll [] U ras [] ] ]_ UIE U13 Ul'i".'.
(p1 @z a3 -« Gzn| _ Ly1 Lz 0 . 0 0 1 Uy Usp
3y 3z 3z ... AQ3p L31 LEE L33 e 0 0 0 1 Ugn

_anl ﬂng ang . ﬂ--n_n_ _LH']_ an Lna . Lnn- ‘I:] '{*]* l[:l}- 3 .,i.

By multiplying matrix L with matrix U and equalizing it to the corresponding element of A4, the elements of matrices L

and U are found as follows:

a1 =Ly11.1+ 00+ 0.0+ - w2 Ly = aq Note that, the order given below is followed to find the

matrix elements.
iy = LEl- 1+ LEE-U + 0.0 + -~ — LEI = 34

L U
{Inj_:Lnl.l‘l‘LnE.U‘l‘Lng.{]‘l"” o Lnlzanl [1 ] l 2 ]
2 3 -
@12 = L3 Uy + 0.1+ 00+ == Upp =2 I
11 ||
Q13 = L11. U3 + 0. U3 + 0.1 + -+ wei U,z = m
Lll

a]_n = Lll'Ulﬂ +{]U2ﬂ +ﬂ. U3ﬂ+”+ * Ulﬂ_ _



In the 2nd step, after the L and U matrices are found, first the intermediate value vector y and then the unknown vector X

are found by the following operations.

Ly=b —» UX=y

Example: Solve the following system of equations using the LU method. X1+ 2x, + 3x3 = —3
le + 5x2 + 2x3 = —8
3x1+x2+5x3 =1

First, let's write the coefficient matrix and decompose to LU matrices.

1 2 3 Li4 1 U12 Uiz
2 5 2|l=|L2 Lzz \ Ugg
Laz

3 1 5 L3y L3y
L, =1 Ly =2 L31 =3
Ligy*xUjp,=2->U, =2 Liy *Uj3=3->U;3=3
Lyy *Ujp+ Ly =5 Ly =1 Lyy xUjz+ Lyp x Uy =2 > Uys = —4

L3y Uy + L3y =1 L3y = =5 L3y * Uiz + L3y * Upz + L3z =5 = L33 = —24



Second, vector Yy according to the expression L.y = b with forward sweep:

1 0 0 1[Ya] [-3 y1 = -3
\2 1 0 ]kz =[—8 ) oy, =2

Using these values, the solution vector is found from the U.x =y equation by the back sweep method.

Il _3 Il —_ 1
X3 0.0

1 2 3
[l] 1 —4
0 0 1




4.3.5 Gauss-Jordan Method

This method 1s similar to the Gauss elimination method and has two stages.

In the first stage, the coefficients matrix (A4) of the given system of linear equations is made diagonal by
basic row operations.

That is, the elements both below and above the matrix diagonal are reset to zero, and the diagonal element

values are set to /, as follows.

a1 a2 A1n bl_ 1 0 0 0 bll
y1 Qoo A, b, 0 1 0 0 by
azy Az asn, bs ) 0 0 1 0 b's
Ap1  An2 Apn byl 0O 0 O 1 b,




Example: Solve the following system of equations by Gauss-Jordan Method.

Pivoting

-6

Ry © Ry

Divide 1st row (R,) by the diagonal element 6: (R, /6)

= R ko O

—6

-3

R,/6

6 1 —6

2 2 3

4 -3 0
0 2 0
] 0.1667

2 2

4 =3

0o 2

—

—1
3

(l
(}

ZXZ +X4:0

2x1 + 2xy + 3x3 + 2x4 = =2
4X1 - 3x2 + x4 = -7
6x1 + xz - 6x3_5.X4:6

2

I
I




Eliminate x, from 2nd to 4th equations:

h—

|
0
0
0

(0.1667
2
-3
2

D o ba e

(.1667
1.6667
— 3.6667
2

-1
3
(}
(}

—1
3
4
()

—0.8333
2
|
|

—0.8333
3.6667
4.3334

|

Ry *(—=2) + R,
Ry * (—4) + R

Rz © Rs3

Divide 2nd row (R,) by the diagonal element -3.6667:

[ ]
0
0
0

R

1667 —1
—3.6667 4
1.6667 5
2 0

—0.8333
4.3334
3.6667

1

R,/(—3.6667)

h—

I 01667 -1 —0.8333: I

0 1.6667 5 3.6667 i\ —4

0 —3.6667 4 43334 -1l
| 0 2 0 I o0
1 01667 -1 —0.8333. 1 |

0 —3.6667 4 4.3334 E—H

0 1.6667 5  3.6667 | —4
| 0 2 0 I 0

1 01667 -1 —0.83331 I

0 1 —-10909 —11818: 3
0 1.6667 5 3.6667 | —4
0 2 0 I 0




Eliminate x, from 1st to 4th equations:

h—

] 0.1667 -y -0.83331 1
0 | ~1.0909 —1.18181 3
0 1.6667 5 3.6667 | —4
0o 2 0 I 0

R, * (—0.1667) + R,

Divide 3rd row (R;) by the diagonal element 6.8182:

—

0 —0.8182 —.0.63641 0.5 |

I —1.0909 -1.1818: 3

0 68182 56364 1 -9

0 2818 3.3636 ' —6 |
Eliminate x; from 1st to 4th equations:

0 —0.8182 —.0.6364 ! 0.5 |

I —1.0909 —11818 ' 3

0 1 0.8267 5—3.33

0 2.1818  3.3636 i — 6

oy e

0

e R e R e

R;/(6.8182)

R; * (1.0909) + R,
R, * (—2.1818) + R,

e R R e R

b B e

0 —0.8182 —.ﬂ.ﬁfiﬁ#‘i 0.5 |
I —1.0909 —1.1818
0 6.8152 5.6364 + -9
0 2.1818 3.3636 ' -0

0 —0.8182 —.0.6364 | 0.5
I -1.0909 -1.1818 ' 3
0 I 0.8267 | —1.32
0 21818 33636 | —6
I 0 0 00400 + —0.58 |
0 1 0 —0.2800: 1.56
0 0 1 08267 132
0 0 0 1.5600 + —3.12




Divide 4th row (R,) by the diagonal element 1.5600:

—

e R e .

0

!
0
0

0

(
{
(

0.0400
—~0.2800
0.8267
1.5600

Eliminate x, from 1st to 3rd equations:

Solution:

—

- R D ~

oD e D

(
(
{
(

(.0400

— (.2800)

(.8267

e e R e R

/

DD e D

e T R

b e T e T

0.58 |
1.56
—1.32
-3.12

R,/(1.5600)

R, * (—0.0400) + R,
R, * (0.2800) + R,

1 0 0 0.0400 | —0.58
0 1 0 —02800: 1.56
0 0 1 08267 1 —1.32
0 0 0 I =2
100 005
0100 LI
0 0 1 0:0.3333
000 1 -2 |
x2=1
x3 = 0.3333
x4=—2
N\ J




NEXT WEEK

Solutions of Linear Equation Systems
Part |l
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