ME 209 Numerical Methods

4. Solution of Linear Equation Systems: Part I

Asst. Prof. Dr. Nurettin Furkan DOĞAN

Mechanical Engineering Department

Gaziantep University

4.1 INTRODUCTION

In previous lecture, we determined the value x that satisfied a single equation, f(x) = 0. Now, we deal with the case of determining the values x_1, x_2, \ldots, x_n that simultaneously satisfy a set of equations

$$f_1(x_1, x_2, \dots, x_n) = 0$$

$$f_2(x_1, x_2, \dots, x_n) = 0$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$f_n(x_1, x_2, \dots, x_n) = 0$$

$$\vdots$$

• Such systems can be either *linear* or *nonlinear*. In this section, we deal with *linear algebraic equations* that are of the general form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

where the a's are constant coefficients, the b's are constants, and n is the number of equations.

• The system of linear equations given can be represented in matrix form:

$$[A]\{x\} = \{b\}$$

where [A] is
$$n \times n$$
 Coefficient matrix $\{x\}$ is $n \times 1$ Unknown vector $\{b\}$ is $n \times 1$ Right-hand side (RHS) vector

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

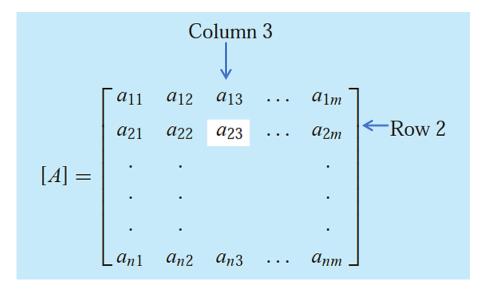
 $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$

In this section, first some reminders about matrices will be made and the types of matrices and matrix operations will be briefly mentioned.

• Then, numerical methods used in solving sets of linear equations will be discussed.

4.2 Matrix

- A *matrix* consists of a rectangular array of elements represented by a single symbol.
- [A] is the shorthand notation for the matrix and a_{ij} designates an individual *element* of the matrix.
- A horizontal set of elements is called a *row* and a vertical set is called a *column*. The first subscript *i* always designates the number of the row in which the element lies. The second subscript *j* designates the column.



n x m Matrix

Row Vector: Matrices with row dimension n = 1, such as $[B] = [b_1 \quad b_2 \quad \cdots \quad b_m]$

$$[B] = [b_1 \quad b_2 \quad \cdots \quad b_m]$$

Column Vector: Matrices with column dimension n = 1, such as

$$[C] = \begin{bmatrix} c_1 \\ c_2 \\ \cdot \\ \cdot \\ \cdot \\ c_n \end{bmatrix}$$

Square Matrix: Matrices where n = m are called *square matrices*. For example, a 4 by 4 matrix is

$$[A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

The diagonal consisting of the elements a_{11} , a_{22} , a_{33} , and a_{44} is termed the *principal* or *main diagonal* of the matrix.

4.2.1 Special Types of Square Matrix

- A *symmetric matrix* is one where $a_{ij} = a_{ji}$ for all *i*'s and *j*'s. For example, $[A] = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 3 & 7 \end{bmatrix}$ is a 3 by 3 symmetric matrix.
- A diagonal matrix is a square matrix where all elements off the main diagonal are equal to zero, as in

$$[A] = \begin{bmatrix} a_{11} \\ a_{22} \\ a_{33} \end{bmatrix}$$
 Note that where large blocks of elements are zero, they are left blank.

An *identity matrix* is a diagonal matrix where all elements on the main diagonal are equal to 1, as in

$$[A] = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

The symbol [I] is used to denote the identity matrix. The identity matrix has properties similar to unity.

An *upper triangular matrix* is one where all the elements below the main diagonal are zero, as in

$$[A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ & a_{22} & a_{23} & a_{24} \\ & & a_{33} & a_{34} \\ & & & a_{44} \end{bmatrix}$$

An *lower triangular matrix* is one where all the elements above the main diagonal are zero, as in

$$[A] = \begin{bmatrix} a_{11} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

A banded matrix has all elements equal to zero, except for a band $[A] = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{44} \end{bmatrix}$

$$A] = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

4.2.2 Matrix Operations

• *Addition* of two matrices, say, [A] and [B], is accomplished by adding corresponding terms in each matrix. The elements of the resulting matrix [C] are computed,

$$c_{ij} = a_{ij} + b_{ij}$$
 for $i = 1, 2, ..., n$ and $j = 1, 2, ..., m$.

• Similarly, the *subtraction* of two matrices, say, [E] minus [F], is obtained by subtracting corresponding terms, as in

$$d_{ij} = e_{ij} - f_{ij}$$
 for $i = 1, 2, ..., n$ and $j = 1, 2, ..., m$.

- Addition and subtraction can be performed only between matrices having the same dimensions.
- Both addition and subtraction are *commutative*:

$$[A] + [B] = [B] + [A]$$

• Addition and subtraction are also *associative*, that is,

$$([A] + [B]) + [C] = [A] + ([B] + [C])$$

• The *multiplication* of a matrix [A] by a scalar g is obtained by multiplying every element of [A] by g, as in

• The *product* of two matrices is represented as [C] = [A][B], where the elements of [C] are defined as

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

where n = the column dimension of [A] and the row dimension of [B]. That is, the c_{ij} element is obtained by adding the product of individual elements from the ith row of the first matrix, in this case [A], by the jth column of the second matrix [B]. $[A]_{n \times m} \quad [B]_{m \times l} = [C]_{n \times l}$

Interior dimensions are equal:

multiplication is possible

Exterior dimensions define the dimensions of the result

• According to this definition, multiplication of two matrices can be performed *only if the first matrix has as many columns as the number of rows in the second matrix*.

Suppose that we want to multiply [X] by [Y] to yield [Z],
$$[Z] = [X][Y] = \begin{bmatrix} 3 & 1 \\ 8 & 6 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

A simple way to visualize the computation of [Z] is to raise [Y], as in

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix} \leftarrow [Y]$$

$$\begin{bmatrix} 3 & 1 \\ 8 & 6 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} ? \\ ? \\ \end{bmatrix} \leftarrow [Z]$$

$$\begin{bmatrix} 3 & 1 \\ 8 & 6 \\ 0 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 3 \times 5 + 1 \times 7 = 22 \\ \hline 8 & 6 \\ 0 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 \\ 8 & 6 \\ 0 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 3 \times 5 + 1 \times 7 = 22 \\ \hline 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix}$$

• If the dimensions of the matrices are suitable, matrix multiplication is associative,

$$([A][B])[C] = [A]([B][C])$$

• and distributive,

$$[A]([B] + [C]) = [A][B] + [A][C]$$

or

$$([A] + [B])[C] = [A][C] + [B][C]$$

• However, multiplication is *not generally commutative*:

$$[A][B] \neq [B][A]$$

• The *transpose of a matrix* involves transforming its rows into columns and its columns into rows.

$$[A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \qquad [A]^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{12} & a_{22} & a_{32} & a_{42} \\ a_{13} & a_{23} & a_{33} & a_{43} \\ a_{14} & a_{24} & a_{34} & a_{44} \end{bmatrix}$$

- In other words, the element a_{ij} of the transpose is equal to the a_{ji} element of the original matrix.
- The *trace* of a matrix is the sum of the elements on its principal diagonal. It is designated as tr [A] and is computed as

$$\operatorname{tr}\left[A\right] = \sum_{i=1}^{n} a_{ii}$$

• If a matrix [A] is square and nonsingular, there is another matrix $[A]^{-1}$, called the *inverse* of [A], for which

$$[A][A]^{-1} = [A]^{-1}[A] = [I]$$

• The *inverse of a two-dimensional square matrix* can be represented simply by

$$[A]^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

• The *determiant of a matrix* is equal to the sum of the products of all elements in any row or column by their cofactors.

$$\det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1i} & \cdots & a_{1j} & \cdots & a_{1N} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2i} & \cdots & a_{2j} & \cdots & a_{2N} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3i} & \cdots & a_{3j} & \cdots & a_{3N} \\ \vdots & \vdots \\ a_{i1} & a_{i2} & a_{i3} & \cdots & a_{ii} & \cdots & a_{ij} & \cdots & a_{iN} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{j1} & a_{j2} & a_{j3} & \cdots & a_{ji} & \cdots & a_{jj} & \cdots & a_{jN} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{N1} & a_{N2} & a_{N3} & \cdots & a_{Ni} & \cdots & a_{Nj} & \cdots & a_{NN} \end{vmatrix} = \sum_{i=1}^{N} a_{ik} M_{ik} (-1)^{i+k} = \sum_{j=1}^{N} a_{kj} M_{kj} (-1)^{k+j}$$

Cofactor matrix M is the matrix composed of multiplication of the minors of A by $(-1)^{i+j}$:

Example: Calculate the determinant and inverse of matrix A.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

We need the cofactor matrix C of A to find the inverse and determinant of matrix A:

$$C = \begin{bmatrix} \begin{vmatrix} 4 & 3 \\ 3 & 4 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 4 \\ 1 & 3 \end{vmatrix} \\ -\begin{vmatrix} 3 & 3 \\ 3 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 1 & 3 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 1 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 1 & 3 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} 7 & -1 & -1 \\ -3 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

$$\det(A) = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} = I \begin{vmatrix} 4 & 3 \\ 3 & 4 \end{vmatrix} - I \begin{vmatrix} 3 & 3 \\ 3 & 4 \end{vmatrix} + I \begin{vmatrix} 3 & 3 \\ 4 & 3 \end{vmatrix} = 7 - 3 - 3 = 1$$
 (Using 1st column elements)

$$A^{-1} = C^T = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

- The final matrix manipulation that will have utility in our discussion is *augmentation*. A matrix is augmented by the addition of a column (or columns) to the original matrix.
- For example, suppose that matrix A augmented with the column matrix B:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & a_{12} & \vdots & b_{11} \\ a_{21} & a_{22} & \vdots & b_{21} \end{bmatrix}$$

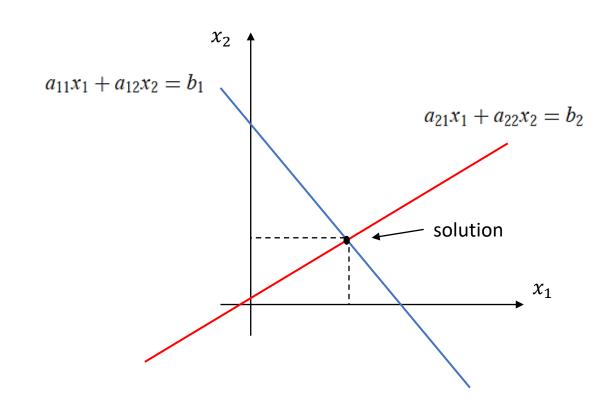
4.3 Solving a Small ($n \le 3$) Set of Equations 4.3.1 Graphical Method

• Consider a set of 2 equations

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2$$

• Both equations can be solved for x_2

$$x_2 = -\left(\frac{a_{11}}{a_{12}}\right)x_1 + \frac{b_1}{a_{12}}$$
$$x_2 = -\left(\frac{a_{21}}{a_{22}}\right)x_1 + \frac{b_2}{a_{22}}$$



Example: Use the graphical method to solve

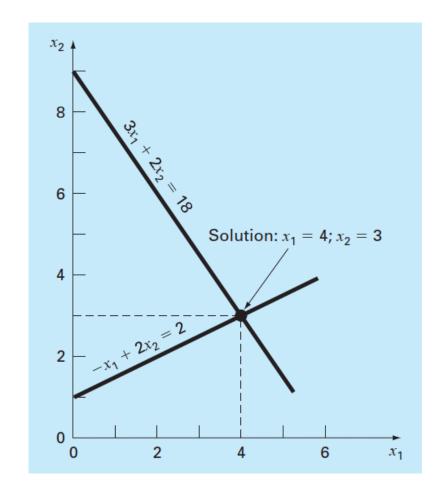
$$3x_1 + 2x_2 = 18$$
$$-x_1 + 2x_2 = 2$$

• Solve equations for x_2 and plot in x_1 - x_2 axes.

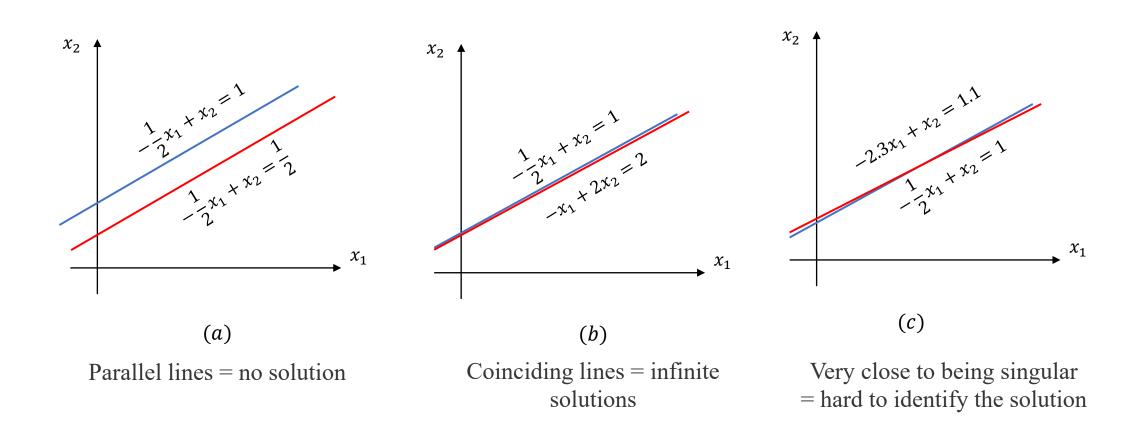
$$3x_1 + 2x_2 = 18 \longrightarrow x_2 = -\frac{3}{2}x_1 + 9$$

$$-x_1 + 2x_2 = 2 \longrightarrow x_2 = \frac{1}{2}x_1 + 1$$

- The solution is the intersection of the two lines at x_1 =4 and x_2 =3.
- For *n*=3, each equation will be a plane on a 3D coordinate system. Solution is the point where these planes intersect.
- For n>3, graphical solution is not practical.



• Following figures represent the case that the graphical methods break down.



4.3.2 Cramer's Rule

Determinant of 2 by 2 system:
$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Determinant of 3 by 3 system: $D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{32} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

Cramer's Rule: Each unknown is calculated as a fraction of two determinants. The denominator is the determinant of the system, D. The numerator is the determinant of a modified system obtained by replacing the column of coefficients of the unknown being calculated by the right-hand-side (RHS) vector.

4.3.2 Cramer's Rule

For a 3x3 system:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \qquad [A]\{x\} = \{b\}$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$x_1 = \frac{\begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}}{D}$$

$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33} \end{vmatrix}}{D} \qquad x_{2} = \frac{\begin{vmatrix} a_{11} & b_{1} & a_{13} \\ a_{21} & b_{2} & a_{23} \\ a_{31} & b_{3} & a_{33} \end{vmatrix}}{D} \qquad x_{3} = \frac{\begin{vmatrix} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ a_{31} & a_{32} & b_{3} \end{vmatrix}}{D}$$

$$x_3 = \frac{\begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}}{D}$$

Example: Use the Cramer's rule to solve

$$0.3x_1 + 0.52x_2 + x_3 = -0.01$$

$$0.5x_1 + x_2 + 1.9x_3 = 0.67$$

$$0.1x_1 + 0.3x_2 + 0.5x_3 = -0.44$$

The determinant D can be written as

$$D = \begin{vmatrix} 0.3 & 0.52 & 1 \\ 0.5 & 1 & 1.9 \\ 0.1 & 0.3 & 0.5 \end{vmatrix}$$

$$D = \begin{vmatrix} 0.3 & 0.52 & 1 \\ 0.5 & 1 & 1.9 \\ 0.1 & 0.3 & 0.5 \end{vmatrix} = 0.3(-0.07) - 0.52(0.06) + 1(0.05) = -0.0022$$

The minors are

$$A_{1} = \begin{vmatrix} 1 & 1.9 \\ 0.3 & 0.5 \end{vmatrix} = 1(0.5) - 1.9(0.3) = -0.07$$

$$A_{2} = \begin{vmatrix} 0.5 & 1.9 \\ 0.1 & 0.5 \end{vmatrix} = 0.5(0.5) - 1.9(0.1) = 0.06$$

$$A_{3} = \begin{vmatrix} 0.5 & 1 \\ 0.1 & 0.3 \end{vmatrix} = 0.5(0.3) - 1(0.1) = 0.05$$

$$x_{1} = \frac{\begin{vmatrix} -0.01 & 0.52 & 1\\ 0.67 & 1 & 1.9\\ -0.44 & 0.3 & 0.5 \end{vmatrix}}{-0.0022} = \frac{0.03278}{-0.0022} = -14.9$$

$$x_{2} = \frac{\begin{vmatrix} 0.3 & -0.01 & 1\\ 0.5 & 0.67 & 1.9\\ 0.1 & -0.44 & 0.5 \end{vmatrix}}{-0.0022} = \frac{0.0649}{-0.0022} = -29.5$$

$$x_{3} = \frac{\begin{vmatrix} 0.3 & 0.52 & -0.01\\ 0.5 & 1 & 0.67\\ 0.1 & 0.3 & -0.44\\ -0.0022 & = \frac{-0.04356}{-0.0022} = 19.8$$

4.3.3 Naive Gauss Elimination Method

• The approach is designed to solve a general set of n equations:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

 $a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \cdots + a_{nn}x_n = b_n$

. .

.

STEP 0 (Optional): Form the augmented matrix of
$$[A|B]$$
.

STEP 1 Forward Elimination: Reduce the system to an upper

1. The initial step will be to eliminate the first unknown, x_1 , from the second through the *n*th equations.

- 2. Multiply the 1st eqn. by a_{21}/a_{11} & subtract it from the 2nd equation. This is the new 2nd eqn.
- 3. ...

triangular system.

4. Multiply the 1st eqn. by a_{n1}/a_{11} & subtract it from the nth equation. This is the new nth eqn.

Important: In these steps the 1st eqn is the **pivot equation** and a_{11} is the **pivot element**. Note that a division by zero may occur if the pivot element is zero. Naive-Gauss Elimination does not check for this.

The modified system is
$$\begin{bmatrix} a_{11} & a_{11} & a_{11} & \dots & a_{1n} \\ 0 & a'_{22} & a'_{23} & \dots & a'_{2n} \\ 0 & a'_{32} & a'_{33} & \dots & a'_{3n} \\ \dots & \dots & \dots & \ddots & \vdots \\ 0 & a'_{n2} & a'_{n3} & \dots & a'_{nn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b'_2 \\ b'_3 \\ \vdots \\ b'_n \end{pmatrix}$$

' indicates that the system is modified once.

Eliminate x_2 from 3rd to nth equations

The modified system is
$$\begin{bmatrix} a_{11} & a_{11} & a_{11} & \dots & a_{1n} \\ 0 & a'_{22} & a'_{23} & \dots & a'_{2n} \\ 0 & 0 & a''_{33} & \dots & a''_{3n} \\ \dots & \dots & \dots & \ddots & \vdots \\ 0 & a''_{n2} & a''_{n3} & \dots & a2'_{nn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b'_2 \\ b''_3 \\ \vdots \\ b''_n \end{pmatrix}$$
 "indicates that the system is modified once.

Repeat the last two procedure to unknowns x_3 to x_n eliminated from 4th to nth equations

At the end of the step 1

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix}$$
 Primes are removed for clarity.

STEP 2 Back Substitution: Find the unknowns starting from the last equation.

- Last equation involves only x_n . Solve for it.
- Use this x_n in the (n-1)th equation and solve for x_{n-1} .
- ..
- Use all previously calculated x values in the 1st eqn and solve for x_1 .

Example: Use gauss elimination to solve the following system of equations.

Step 0: Construct augmented matrix

$$\begin{bmatrix} 6 & -2 & 2 & 4 & | & 16 \\ 12 & -8 & 6 & 10 & | & 26 \\ 3 & -13 & 9 & 3 & | & -19 \\ -6 & 4 & 1 & -18 & | & -34 \end{bmatrix}$$

$$6x_1 - 2x_2 + 2x_3 + 4x_4 = 16$$

$$12x_1 - 8x_2 + 6x_3 + 10x_4 = 26$$

$$3x_1 - 13x_2 + 9x_3 + 3x_4 = -19$$

$$-6x_1 + 4x_2 + x_3 - 18x_4 = -34$$

Step 1: Forward elimination

: Pivot element

Eliminate
$$x_1$$

$$\begin{bmatrix}
6 & -2 & 2 & 4 & | & 16 \\
12 & -8 & 6 & 10 & | & 26 \\
3 & -13 & 9 & 3 & | & -19 \\
-6 & 4 & 1 & -18 & | & -34
\end{bmatrix}$$
• $-2 * R_1 + R_2$
• $-\frac{1}{2} * R_1 + R_3$
• $R_1 + R_4$

$$\begin{bmatrix}
6 & -2 & 2 & 4 & | & 16 \\
0 & -4 & 2 & 2 & | & -6 \\
0 & -12 & 8 & 1 & | & -27 \\
0 & 2 & 3 & -14 & | & -18
\end{bmatrix}$$

•
$$-2 * R_1 + R_2$$

• $-\frac{1}{2} * R_1 + R_3$
• $R_1 + R_4$

$$\begin{bmatrix} 6 & -2 & 2 & 4 & | & 16 \\ 0 & -4 & 2 & 2 & | & -6 \\ 0 & -12 & 8 & 1 & | & -27 \\ 0 & 2 & 3 & -14 & | & -18 \end{bmatrix}$$

Eliminate
$$x_2$$

$$\begin{bmatrix}
6 & -2 & 2 & 4 & | & 16 \\
0 & -4 & 2 & 2 & | & -6 \\
0 & -12 & 8 & 1 & | & -27 \\
0 & 2 & 3 & -14 & | & -18
\end{bmatrix}$$

$$\bullet \quad -3 * R_2 + R_3$$

$$\bullet \quad \frac{1}{2} * R_2 + R_4$$

$$\bullet \quad \frac{1}{2} * R_2 + R_4$$

$$\bullet \quad \frac{1}{2} * R_2 + R_4$$

$$\bullet \quad 0 \quad 0 \quad 2 \quad -5 \quad | \quad -9 \\
0 \quad 0 \quad 4 \quad -13 \quad | \quad -21$$

•
$$-3 * R_2 + R_3$$

• $\frac{1}{2} * R_2 + R_4$

$$\begin{bmatrix} 6 & -2 & 2 & 4 & | & 16 \\ 0 & -4 & 2 & 2 & | & -6 \\ 0 & 0 & 2 & -5 & | & -9 \\ 0 & 0 & 4 & -13 & | & -21 \end{bmatrix}$$

Eliminate
$$x_3$$

$$\begin{bmatrix}
6 & -2 & 2 & 4 & | & 16 \\
0 & -4 & 2 & 2 & | & -6 \\
0 & 0 & 2 & -5 & | & -9 \\
0 & 0 & 4 & -13 & | & -21
\end{bmatrix}$$
• $-2 * R_3 + R_4$

$$\longrightarrow
\begin{bmatrix}
6 & -2 & 2 & 4 & | & 16 \\
0 & -4 & 2 & 2 & | & -6 \\
0 & 0 & 2 & -5 & | & -9 \\
0 & 0 & 0 & -3 & | & -3
\end{bmatrix}$$

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 16 \\ -6 \\ -9 \\ -3 \end{pmatrix}$$

Step 2: Back substitution
$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 16 \\ -6 \\ -9 \\ -3 \end{pmatrix}$$
$$-3x_4 = -3 \rightarrow x_4 = 1$$
$$2x_3 - 5x_4 = -9 \rightarrow x_3 = -2$$
$$-4x_2 + 2x_3 + 2x_4 = -6 \rightarrow x_2 = 1$$
$$6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \rightarrow x_1 = 3$$

PIVOTING

- *Pivoting* is the displacement of rows in the coefficient matrix so that the diagonal elements are maximized in absolute value.
- Pivoting is employed to prevent division by zero, a pitfall that could cause the failure of the Naive Gauss elimination method.

Example: Solve the following system using Gauss Elimination with pivoting.

$$2x_{2} + x_{4} = 0$$

$$2x_{1} + 2x_{2} + 3x_{3} + 2x_{4} = -2$$

$$4x_{1} - 3x_{2} + x_{4} = -7$$

$$6x_{1} + x_{2} - 6x_{3} - 5x_{4} = 6$$

Step 0: Construct augmented matrix

$$\begin{bmatrix} 0 & 2 & 0 & 1 & | & 0 \\ 2 & 2 & 3 & 2 & | & -2 \\ 4 & -3 & 0 & 1 & | & -7 \\ 6 & 1 & -6 & -5 & | & 6 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 0 & 1 & | & 0 \\ 2 & 2 & 3 & 2 & | & -2 \\ 4 & -3 & 0 & 1 & | & -7 \\ 6 & 1 & -6 & -5 & | & 6 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 0 & 1 & | & 0 \\ 2 & 2 & 3 & 2 & | & -2 \\ 4 & -3 & 0 & 1 & | & -7 \\ 6 & 1 & -6 & -5 & | & 6 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 1 & -6 & -5 & | & 6 \\ 2 & 2 & 3 & 2 & | & -2 \\ 4 & -3 & 0 & 1 & | & -7 \\ 0 & 2 & 0 & 1 & | & 0 \end{bmatrix}$$

Step 1: Forward elimination

Eliminate
$$x_1$$

$$\begin{bmatrix} 6 & 1 & -6 & -5 & | & 6 \\ 2 & 2 & 3 & 2 & | & -2 \\ 4 & -3 & 0 & 1 & | & -7 \\ 0 & 2 & 0 & 1 & | & 0 \end{bmatrix}$$

•
$$-\frac{1}{3} * R_1 + R_2$$

•
$$-\frac{2}{3}*R_1+R_3$$

Eliminate
$$x_1$$

$$\begin{bmatrix}
6 & 1 & -6 & -5 & | & 6 \\
2 & 2 & 3 & 2 & | & -2 \\
4 & -3 & 0 & 1 & | & -7 \\
0 & 2 & 0 & 1 & | & 0
\end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{3} * R_1 + R_2 \\
-\frac{2}{3} * R_1 + R_3
\end{bmatrix}$$

$$\begin{bmatrix}
6 & 1 & -6 & -5 & | & 6 \\
0 & 1.6667 & 5 & 3.6667 & | & -4 \\
0 & -3.6667 & 4 & 4.3333 & | & -11 \\
0 & 2 & 0 & 1 & | & 0
\end{bmatrix}$$

Pivoting R_2 and R_3 . Then, eliminate x_2

$$\begin{bmatrix} 6 & 1 & -6 & -5 & | & 6 \\ 0 & -3.6667 & 4 & 4.3333 & | & -11 \\ 0 & 1.6667 & 5 & 3.6667 & | & -4 \\ 0 & 2 & 0 & 1 & | & 0 \end{bmatrix}$$

$$\bullet \quad \frac{1.6667}{3.6667} * R_2 + R_3$$

•
$$\frac{2}{3.6667} * R_2 + R_4$$

$$\begin{bmatrix} 6 & 1 & -6 & -5 & | & 6 \\ 0 & -3.6667 & 4 & 4.3333 & | & -11 \\ 0 & 1.6667 & 5 & 3.6667 & | & -4 \\ 0 & 2 & 0 & 1 & | & 0 \end{bmatrix} \quad \bullet \quad \frac{\frac{1.6667}{3.6667} * R_2 + R_3}{\frac{2}{3.6667} * R_2 + R_4} \quad \longrightarrow \quad \begin{bmatrix} 6 & 1 & 6 & -5 & | & 6 \\ 0 & -3.6667 & 4 & 4.3333 & | & -11 \\ 0 & 0 & 6.8182 & 5.6364 & | & -9.0001 \\ 0 & 0 & 2.1818 & 3.3636 & | & -5.9999 \end{bmatrix}$$

Eliminate x_3

$$\begin{bmatrix} 6 & 1 & 6 & -5 & | & 6 \\ 0 & -3.6667 & 4 & 4.3333 & | & -11 \\ 0 & 0 & 6.8182 & 5.6364 & | & -9.0001 \\ 0 & 0 & 2.1818 & 3.3636 & | & -5.9999 \end{bmatrix} \bullet \frac{-2.1818}{6.8182} * R_3 + R_4 \longrightarrow \begin{bmatrix} 6 & 1 & 6 & -5 & | & 6 \\ 0 & -3.6667 & 4 & 4.3333 & | & -11 \\ 0 & 0 & 6.8182 & 5.6364 & | & -9.0001 \\ 0 & 0 & 0 & 1.5600 & | & -3.1199 \end{bmatrix}$$

Step 2: Backward substitution

$$1.56x_4 = -3.1199 \rightarrow x_4 = -1.9999$$

$$6.8182x_3 + 5.6364x_4 = -9.0001 \rightarrow x_3 = 0.33325$$

$$-3.6667x_2 + 4x_3 + 4.3333x_4 = -11 \rightarrow x_2 = 1.0$$

$$6x_1 + x_2 + 6x_3 - 5x_4 = 6 \rightarrow x_1 = -0.5$$

SCALING

- *Scaling* is to normalize the equations so that the maximum coefficient in every row is equal to 1.0. That is, divide each row by the coefficient in that row with the maximum magnitude.
- It is advised to scale a system before calculating its determinant. This is especially important if we are calculating the determinant to see if the system is ill-conditioned or not.
- Consider the following systems

$$2x_1 - 3x_2 = 5$$
 $20x_1 - 30x_2 = 50$
 $3.98x_1 - 6x_2 = 7$ $39.8x_1 - 60x_2 = 70$

- They are actually the same system. In the second one the equations are multiplied by 10.
- Determinant of the 1st system is 2(-6) (-3)(3.98) = -0.06, which is close to zero.
- Determinant of the 2nd system is 20(-60) (-30)(39.8) = -6, which is not that close to zero.
- So, is this system ill-conditioned or not?

4.3.4 LU Decomposition Method

The Gauss elimination method can essentially be expressed as follows using matrix notation.

$$A. x = B$$
$$A = P. L. U$$

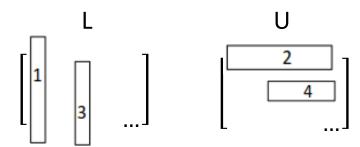
Here, P is the matrix expressing the row displacements during pivoting, L is the lower triangular matrix consisting of the multipliers used during the zeroing of the columns, and U is the upper triangular matrix reached in the Gauss elimination method.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 & 0 & \cdots & 0 \\ L_{21} & L_{22} & 0 & \cdots & 0 \\ L_{31} & L_{32} & L_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ L_{n1} & L_{n2} & L_{n3} & \cdots & L_{nn} \end{bmatrix} \begin{bmatrix} 1 & U_{12} & U_{13} & \cdots & U_{1n} \\ 0 & 1 & U_{23} & \cdots & U_{2n} \\ 0 & 0 & 1 & \cdots & U_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 & 0 & \dots & 0 \\ L_{21} & L_{22} & 0 & \dots & 0 \\ L_{31} & L_{32} & L_{33} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ L_{n1} & L_{n2} & L_{n3} & \dots & L_{nn} \end{bmatrix} \begin{bmatrix} 1 & U_{12} & U_{13} & \dots & U_{1n} \\ 0 & 1 & U_{23} & \dots & U_{2n} \\ 0 & 0 & 1 & \dots & U_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

By multiplying matrix L with matrix U and equalizing it to the corresponding element of A, the elements of matrices L and U are found as follows:

Note that, the order given below is followed to find the matrix elements.



In the 2nd step, after the L and U matrices are found, first the intermediate value vector \vec{y} and then the unknown vector \vec{x} are found by the following operations.

$$L. \vec{y} = \vec{b}$$
 \longrightarrow $U. \vec{x} = \vec{y}$

Example: Solve the following system of equations using the LU method.

$$x_1 + 2x_2 + 3x_3 = -3$$
$$2x_1 + 5x_2 + 2x_3 = -8$$
$$3x_1 + x_2 + 5x_3 = 1$$

First, let's write the coefficient matrix and decompose to LU matrices.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 2 \\ 3 & 1 & 5 \end{bmatrix} = \begin{bmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{bmatrix} \begin{bmatrix} 1 & U_{12} & U_{13} \\ 0 & 1 & U_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{l} L_{11} = 1 \\ L_{11} * U_{12} = 2 \to U_{12} = 2 \\ L_{21} * U_{12} + L_{22} = 5 \to L_{22} = 1 \\ L_{31} * U_{12} + L_{32} = 1 \to L_{32} = -5 \end{array} \qquad \begin{array}{l} L_{21} = 2 \\ L_{11} * U_{13} = 3 \to U_{13} = 3 \\ L_{21} * U_{13} + L_{22} * U_{23} = 2 \to U_{23} = -4 \\ L_{31} * U_{13} + L_{32} * U_{23} + L_{33} = 5 \to L_{33} = -24 \end{array}$$

Second, vector \vec{y} according to the expression $L \cdot \vec{y} = \vec{b}$ with forward sweep:

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -5 & -24 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -3 \\ -8 \\ 1 \end{bmatrix} \qquad y_1 = -3$$
$$y_2 = -2$$
$$y_3 = 0.0$$

Using these values, the solution vector is found from the $U \cdot \vec{x} = \vec{y}$ equation by the back sweep method.

4.3.5 Gauss-Jordan Method

- This method is similar to the Gauss elimination method and has two stages.
- In the first stage, the coefficients matrix (A) of the given system of linear equations is made diagonal by basic row operations.
- That is, the elements both below and above the matrix diagonal are reset to zero, and the diagonal element values are set to 1, as follows.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ a_{31} & a_{32} & \dots & a_{3n} & b_3 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & b'_1 \\ 0 & 1 & 0 & \dots & 0 & b'_2 \\ 0 & 0 & 1 & \dots & 0 & b'_3 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & b'_n \end{bmatrix}$$

Example: Solve the following system of equations by Gauss-Jordan Method.

$$2x_{2} + x_{4} = 0$$

$$2x_{1} + 2x_{2} + 3x_{3} + 2x_{4} = -2$$

$$4x_{1} - 3x_{2} + x_{4} = -7$$

$$6x_{1} + x_{2} - 6x_{3} - 5x_{4} = 6$$

<u>Pivoting</u>

$$\begin{bmatrix} 0 & 2 & 0 & 1 & 0 \\ 2 & 2 & 3 & 2 & -2 \\ 4 & -3 & 0 & 1 & -7 \\ 6 & 1 & -6 & -5 & 6 \end{bmatrix} \qquad R_1 \leftrightarrow R_4 \qquad \begin{bmatrix} 6 & 1 & -6 & -5 & 6 \\ 2 & 2 & 3 & 2 & -2 \\ 4 & -3 & 0 & 1 & -7 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix}$$

Divide 1st row (R_1) by the diagonal element 6: ($R_1/6$)

$$\begin{bmatrix} 6 & 1 & -6 & -5 & 6 \\ 2 & 2 & 3 & 2 & -2 \\ 4 & -3 & 0 & 1 & -7 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix} \qquad R_1/6 \qquad \begin{bmatrix} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 2 & 2 & 3 & 2 & -2 \\ 4 & -3 & 0 & 1 & -7 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix}$$

Eliminate x_1 from 2nd to 4th equations:

$$\begin{bmatrix} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 2 & 2 & 3 & 2 & -2 \\ 4 & -3 & 0 & 1 & -7 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{array}{c} R_1*(-2) + R_2 \\ R_1*(-4) + R_3 \\ R_1*(-4) + R_3 \\ \end{array} \qquad \begin{array}{c} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 0 & 1.6667 & 5 & 3.6667 & -4 \\ 0 & -3.6667 & 4 & 4.3334 & -11 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix}$$

$$R_1 * (-2) + R_2$$

 $R_1 * (-4) + R_3$

$$\begin{bmatrix} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 0 & 1.6667 & 5 & 3.6667 & -4 \\ 0 & -3.6667 & 4 & 4.3334 & -11 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 0 & 1.6667 & 5 & 3.6667 & -4 \\ 0 & -3.6667 & 4 & 4.3334 & -11 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix}$$

$$R_2 \leftrightarrow R_3$$

$$\begin{bmatrix} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 0 & 1.6667 & 5 & 3.6667 & -4 \\ 0 & -3.6667 & 4 & 4.3334 & -11 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix} \qquad R_2 \leftrightarrow R_3 \qquad \begin{bmatrix} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 0 & -3.6667 & 4 & 4.3334 & -11 \\ 0 & 1.6667 & 5 & 3.6667 & -4 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix}$$

Divide 2nd row (R_2) by the diagonal element -3.6667:

$$\begin{bmatrix} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 0 & -3.6667 & 4 & 4.3334 & -11 \\ 0 & 1.6667 & 5 & 3.6667 & -4 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix}$$

$$R_2/(-3.6667)$$

$$\begin{bmatrix} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 0 & -3.6667 & 4 & 4.3334 & -11 \\ 0 & 1.6667 & 5 & 3.6667 & -4 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix} R_2/(-3.6667) \begin{bmatrix} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 0 & 1 & -1.0909 & -1.1818 & 3 \\ 0 & 1.6667 & 5 & 3.6667 & -4 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix}$$

Eliminate x_2 from 1st to 4th equations:

$$\begin{bmatrix} 1 & 0.1667 & -1 & -0.8333 & 1 \\ 0 & 1 & -1.0909 & -1.1818 & 3 \\ 0 & 1.6667 & 5 & 3.6667 & -4 \\ 0 & 2 & 0 & 1 & 0 \end{bmatrix} \qquad R_2 * (-1)$$

Divide 3rd row (R_3) by the diagonal element 6.8182:

$$\begin{bmatrix} 1 & 0 & -0.8182 & -.0.6364 & 0.5 \\ 0 & 1 & -1.0909 & -1.1818 & 3 \\ 0 & 0 & 6.8182 & 5.6364 & -9 \\ 0 & 0 & 2.1818 & 3.3636 & -6 \end{bmatrix}$$
 $R_3/(6.8182)$

Eliminate x_3 from 1st to 4th equations:

$$\begin{bmatrix} 1 & 0 & -0.8182 & -.0.6364 & 0.5 \\ 0 & 1 & -1.0909 & -1.1818 & 3 \\ 0 & 0 & 1 & 0.8267 & -1.32 \\ 0 & 0 & 2.1818 & 3.3636 & -6 \end{bmatrix} \qquad \begin{array}{c} R_3*(1.0909) + R_2 \\ R_3*(-2.1818) + R_4 \\ 0 & 0 & 0 & 1.5600 & -3.12 \\ \end{array}$$

$$R_3 * (1.0909) + R_2$$

 $R_3 * (-2.1818) + R_4$

$$\begin{bmatrix} 1 & 0 & 0 & 0.0400 & -0.58 \\ 0 & 1 & 0 & -0.2800 & 1.56 \\ 0 & 0 & 1 & 0.8267 & -1.32 \\ 0 & 0 & 0 & 1.5600 & -3.12 \end{bmatrix}$$

Divide 4th row (R_{4}) by the diagonal element 1.5600:

$$\begin{bmatrix} 1 & 0 & 0 & 0.0400 & -0.58 \\ 0 & 1 & 0 & -0.2800 & 1.56 \\ 0 & 0 & 1 & 0.8267 & -1.32 \\ 0 & 0 & 0 & 1.5600 & -3.12 \end{bmatrix} \qquad R_4/(1.5600) \qquad \begin{bmatrix} 1 & 0 & 0 & 0.0400 & -0.58 \\ 0 & 1 & 0 & -0.2800 & 1.56 \\ 0 & 0 & 1 & 0.8267 & -1.32 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix}$$

Eliminate x_4 from 1st to 3rd equations:

$$\begin{bmatrix} 1 & 0 & 0 & 0.0400 & -0.58 \\ 0 & 1 & 0 & -0.2800 & 1.56 \\ 0 & 0 & 1 & 0.8267 & -1.32 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix} \qquad \begin{array}{c} R_4*(-0.0400) + R_1 \\ R_4*(0.2800) + R_2 \\ R_4*(-0.8267) + R_3 \\ R_4*(-0.8267) + R_3 \\ \end{array} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 0 & 1. \\ 0 & 0 & 1 & 0 & 0.3333 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 0 & 1. \\ 0 & 0 & 1 & 0 & 0.3333 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 = -0.5 \\ x_2 = 1 \\ x_3 = 0.3333 \\ x_4 = -2 \end{bmatrix}$$

$$x_1 = -0.5$$
 $x_2 = 1$
 $x_3 = 0.3333$
 $x_4 = -2$

NEXT WEEK Solutions of Linear Equation Systems Part II