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4.1 INTRODUCTION

• In previous lecture, we determined the value x that satisfied a single equation, f (x) = 0. Now, we deal 

with the case of determining the values x1, x2, . . . , xn
 that simultaneously satisfy a set of equations

• Such systems can be either linear or nonlinear. In this section, we deal with linear algebraic equations 

that are of the general form 

(General set of equations)

where the a’s are constant 

coefficients, the b’s are 

constants, and n is the number 

of equations. 



• The system of linear equations given can be represented in matrix

form:

where 𝐴 is n x n Coefficient matrix

𝑥 is n x 1 Unknown vector

𝑏 is n x 1 Right-hand side (RHS) vector

𝐴 𝑥 = {𝑏}

• In this section, first some reminders about matrices will be made and the types of matrices and matrix 

operations will be briefly mentioned.

• Then, numerical methods used in solving sets of linear equations will be discussed.



4.2 Matrix

• A matrix consists of a rectangular array of elements 

represented by a single symbol. 

• [A] is the shorthand notation for the matrix and aij
 designates 

an individual element of the matrix. 

• A horizontal set of elements is called a row and a vertical set is 

called a column. The first subscript i always designates the 

number of the row in which the element lies. The second 

subscript j designates the column. 

n x m Matrix



Row Vector: Matrices with row dimension n = 1, such as

Column Vector: Matrices with column dimension n = 1, such as

Square Matrix: Matrices where n = m are called square matrices. For example, a 4 by 4 matrix is

The diagonal consisting of the elements a11, a22, a33, and a44
 is termed the principal or main diagonal of 

the matrix.



4.2.1 Special Types of Square Matrix

• A symmetric matrix is one where aij
 = aji

 for all i’s and j’s. For example, is a 3 by 

3 symmetric matrix.

• A diagonal matrix is a square matrix where all elements off the main diagonal are equal to zero, as in

𝐴 =

𝑎11
𝑎22

𝑎33
𝑎44

• An identity matrix is a diagonal matrix where all elements on the main diagonal are equal to 1, as in

𝐴 =

1
1

1
1

The symbol [I] is used to denote the identity matrix. The identity matrix has properties similar to unity.

Note that where large blocks of 

elements are zero, they are left 

blank.



• An upper triangular matrix is one where all the elements below the 

main diagonal are zero, as in

• An lower triangular matrix is one where all the elements above the 

main diagonal are zero, as in

• A banded matrix has all elements equal to zero, except for a band 

centered on the main diagonal:



4.2.2 Matrix Operations

• Addition of two matrices, say, [A] and [B], is accomplished by adding corresponding terms in each 

matrix. The elements of the resulting matrix [C] are computed,

cij = aij + bij

• Similarly, the subtraction of two matrices, say, [E] minus [F], is obtained by subtracting 

corresponding terms, as in

dij = eij − fij

• Addition and subtraction can be performed only between matrices having the same dimensions.

• Both addition and subtraction are commutative: 

[A] + [B] = [B] + [A]

• Addition and subtraction are also associative, that is,

([A] + [B]) + [C] = [A] + ([B] + [C])

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. 

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. 



• The multiplication of a matrix [A] by a scalar g is obtained by multiplying every element of [A] by g, 

as in

• The product of two matrices is represented as [C] = [A][B], where the elements of [C] are defined as 

where n = the column dimension of [A] and the row dimension of [B]. That is, the cij
 element is 

obtained by adding the product of individual elements from the ith row of the first matrix, in this case 

[A], by the jth column of the second matrix [B].

• According to this definition, multiplication of two matrices can be 

performed only if the first matrix has as many columns as the 

number of rows in the second matrix. 



• Suppose that we want to multiply [X] by [Y ] to yield [Z ],

• A simple way to visualize the computation of [Z ] is to raise [Y ], as in



• If the dimensions of the matrices are suitable, matrix multiplication is associative,

([A][B])[C] = [A]([B][C])

• and distributive,

[A]([B] + [C]) = [A][B] + [A][C]

or

([A] + [B])[C] = [A][C] + [B][C]

• However, multiplication is not generally commutative:

[A][B] ≠ [B][A]



• If a matrix [A] is square and nonsingular, there is another matrix [A]−1, called the inverse of [A], for 

which

[A][A]−1 = [A]−1[A] = [I ]

• The inverse of a two-dimensional square matrix can be represented simply by

• The transpose of a matrix involves transforming its rows into columns and its columns into rows.

• In other words, the element aij
 of the transpose is equal to the aji

 element of the original matrix.

• The trace of a matrix is the sum of the elements on its principal diagonal. It is designated as tr [A] and 

is computed as



• The determiant of a matrix is equal to the sum of the products of all elements in any row or column 

by their cofactors.

det(𝐴) = 𝐴 =

Cofactor matrix M is the matrix composed of multiplication of the minors of A by (-1)i+j: 



Example: Calculate the determinant and inverse of matrix A.

We need the cofactor matrix C of A to find the inverse and determinant of matrix A: 

𝐶 =

4 3
3 4

−
1 3
1 4

1 4
1 3

−
3 3
3 4

1 3
1 4

−
1 3
1 3

3 3
4 3

−
1 3
1 3

1 3
1 4

=
7 −1 −1
−3 1 0
−3 0 1

(Using 1st column elements)

𝐴−1 = 𝐶𝑇 =
7 −3 −3
−1 1 0
−1 0 1



• The final matrix manipulation that will have utility in our discussion is augmentation. A matrix is 

augmented by the addition of a column (or columns) to the original matrix. 

• For example, suppose that matrix A augmented with the column matrix B:

𝐴 =
𝑎11 𝑎12
𝑎21 𝑎22

𝐵 =
𝑏11
𝑏21

𝐴 =
𝑎11 𝑎12 ⋮ 𝑏11
𝑎21 𝑎22 ⋮ 𝑏21



4.3 Solving a Small (𝑛 ≤ 3) Set of Equations

• Consider a set of 2 equations

• Both equations can be solved for x2

𝑥2

𝑥1

solution

4.3.1 Graphical Method



Example: Use the graphical method to solve

• Solve equations for x2 and plot in x1 - x2 axes.

• The solution is the intersection of the two lines at x1=4 and 

x2=3. 

• For n=3, each equation will be a plane on a 3D 

coordinate system. Solution is the point where these 

planes intersect.

• • For n>3, graphical solution is not practical.



• Following figures represent the case that the graphical methods break down.

𝑥2

𝑥1

(𝑎)

𝑥2

𝑥1

(𝑏)

𝑥2

𝑥1

(𝑐)

Parallel lines = no solution Coinciding lines = infinite

solutions

Very close to being singular

= hard to identify the solution



4.3.2 Cramer’s Rule

• Determinant of 2 by 2 system:

• Determinant of 3 by 3 system:

minors

Cramer’s Rule: Each unknown is calculated as a fraction of two determinants. The denominator is the 

determinant of the system, D. The numerator is the determinant of a modified system obtained by 

replacing the column of coefficients of the unknown being calculated by the right-hand-side (RHS) vector.



4.3.2 Cramer’s Rule

For a 3x3 system: 

𝑥1 =

𝑏1 𝑎12 𝑎13
𝑏2 𝑎22 𝑎23
𝑏3 𝑎32 𝑎33

𝐷

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

𝑥2 =

𝑎11 𝑏1 𝑎13
𝑎21 𝑏2 𝑎23
𝑎31 𝑏3 𝑎33

𝐷
𝑥3 =

𝑎11 𝑎12 𝑏1
𝑎21 𝑎22 𝑏2
𝑎31 𝑎32 𝑏3

𝐷

𝐴 𝑥 = {𝑏}

Example: Use the Cramer’s rule to solve





1. The initial step will be to eliminate the first unknown, x1, from the second through the nth equations. 

2. Multiply the 1st eqn. by a21/a11 & subtract it from the 2nd equation. This is the new 2nd eqn. 

3. ...

4. Multiply the 1st eqn. by an1/a11 & subtract it from the nth equation. This is the new nth eqn. 

4.3.3 Naive Gauss Elimination Method

• The approach is designed to solve a general set of n equations:

STEP 0 (Optional): Form the augmented matrix of [A|B].

STEP 1 Forward Elimination: Reduce the system to an upper 

triangular system. 

Important: In these steps the 1st eqn is the pivot equation and a11 is the pivot element. Note that a division 

by zero may occur if the pivot element is zero. Naive-Gauss Elimination does not check for this.



The modified system is

𝑎11 𝑎11 𝑎11 … 𝑎1𝑛
0 𝑎′22 𝑎′23 … 𝑎′2𝑛
0 𝑎′32 𝑎′33 … 𝑎′3𝑛
… … … ⋱ ⋮
0 𝑎′𝑛2 𝑎′𝑛3 … 𝑎′𝑛𝑛

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛

=

𝑏1
𝑏′2
𝑏′3
⋮
𝑏′𝑛

′ indicates that the system is 

modified once.

𝑎11 𝑎11 𝑎11 … 𝑎1𝑛
0 𝑎′22 𝑎′23 … 𝑎′2𝑛
0 0 𝑎′′33 … 𝑎′′3𝑛
… … … ⋱ ⋮
0 𝑎′′𝑛2 𝑎′′𝑛3 … 𝑎2′𝑛𝑛

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛

=

𝑏1
𝑏′2
𝑏′′3
⋮

𝑏′′𝑛

• Eliminate 𝑥2 from 3rd to nth equations

The modified system is
′′ indicates that the system is 

modified once.

• Repeat the last two procedure to unkonwns 𝑥3 𝑡𝑜 𝑥𝑛eliminated from 4th to nth equations

At the end of the step 1

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛
0 𝑎22 𝑎23 … 𝑎2𝑛
0 0 𝑎33 … 𝑎3𝑛
… … … … …
0 0 0 … 𝑎𝑛𝑛

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛

=

𝑏1
𝑏2
𝑏3
⋮
𝑏𝑛

Primes are removed for clarity.



STEP 2 Back Substitution: Find the unknowns starting from the last equation.

• Last equation involves only xn. Solve for it.

• Use this xn in the (n-1)th equation and solve for xn-1.

• ...

• Use all previously calculated x values in the 1st eqn and solve for x1.

Example: Use gauss elimination to solve the following system of equations.

6x1
 – 2x2

 + 2x3
 + 4x4

 = 16 

12x1
 – 8x2

 + 6x3
 + 10x4

 = 26 

3x1
 – 13x2

 + 9x3
 + 3x4

 = -19 

-6x1
 + 4x2

 + x3
 - 18x4

 = -34

Step 0: Construct augmented matrix

6 −2 2 4 | 16
12 −8 6 10 | 26
3 −13 9 3 | −19
−6 4 1 −18 | −34



Step 1: Forward elimination

6 −2 2 4 | 16
12 −8 6 10 | 26
3 −13 9 3 | −19
−6 4 1 −18 | −34

Eliminate x1
• −2 ∗ 𝑅1 + 𝑅2
• −

1

2
∗ 𝑅1 + 𝑅3

• 𝑅1 + 𝑅4

6 −2 2 4 | 16
0 −4 2 2 | −6
0 −12 8 1 | −27
0 2 3 −14 | −18

Eliminate x2
• −3 ∗ 𝑅2 + 𝑅3
•

1

2
∗ 𝑅2 + 𝑅4

6 −2 2 4 | 16
0 −4 2 2 | −6
0 0 2 −5 | −9
0 0 4 −13 | −21

6 −2 2 4 | 16
0 −4 2 2 | −6
0 −12 8 1 | −27
0 2 3 −14 | −18

Eliminate x3

6 −2 2 4 | 16
0 −4 2 2 | −6
0 0 2 −5 | −9
0 0 4 −13 | −21

• −2 ∗ 𝑅3 + 𝑅4

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3

𝑥1
𝑥2
𝑥3
𝑥4

=

16
−6
−9
−3

: Pivot element

Step 2: Back substitution

6 −2 2 4 | 16
0 −4 2 2 | −6
0 0 2 −5 | −9
0 0 0 −3 | −3

−3𝑥4 = −3 → 𝒙𝟒 = 𝟏

2𝑥3 − 5𝑥4 = −9 → 𝒙𝟑 = −𝟐

−4𝑥2 + 2𝑥3 + 2𝑥4 = −6 → 𝒙𝟐 = 𝟏

6𝑥1 − 2𝑥2 + 2𝑥3 + 4𝑥4 = 16 → 𝒙𝟏 = 𝟑



PIVOTING

• Pivoting is the displacement of rows in the coefficient matrix so that the diagonal elements are maximized 

in absolute value.

• Pivoting is employed to prevent division by zero, a pitfall that could cause the failure of the Naive Gauss 

elimination method.

Example: Solve the following system using Gauss Elimination with pivoting.

2x2
 + x4

 = 0
2x1 + 2x2

 + 3x3
 + 2x4

 = -2 
4x1

 – 3x2
 + x4

 = -7
6x1

 + x2
 - 6x3

 - 5x4
 = 6 

Step 0: Construct augmented matrix
0 2 0 1 | 0
2 2 3 2 | −2
4 −3 0 1 | −7
6 1 −6 −5 | 6



Pivoting
R1 and R4

0 2 0 1 | 0
2 2 3 2 | −2
4 −3 0 1 | −7
6 1 −6 −5 | 6

6 1 −6 −5 | 6
2 2 3 2 | −2
4 −3 0 1 | −7
0 2 0 1 | 0

Eliminate x1 • −
1

3
∗ 𝑅1 + 𝑅2

• −
2

3
∗ 𝑅1 + 𝑅3

Step 1: Forward elimination

6 1 −6 −5 | 6
2 2 3 2 | −2
4 −3 0 1 | −7
0 2 0 1 | 0

6 1 −6 −5 | 6
0 1.6667 5 3.6667 | −4
0 −3.6667 4 4.3333 | −11
0 2 0 1 | 0

Pivoting R2 and R3. Then, eliminate x2

•
1.6667

3.6667
∗ 𝑅2 + 𝑅3

•
2

3.6667
∗ 𝑅2 + 𝑅4

6 1 6 −5 | 6
0 −3.6667 4 4.3333 | −11
0 0 6.8182 5.6364 | −9.0001
0 0 2.1818 3.3636 | −5.9999

6 1 −6 −5 | 6
0 −3.6667 4 4.3333 | −11
0 1.6667 5 3.6667 | −4
0 2 0 1 | 0



Eliminate x3

6 1 6 −5 | 6
0 −3.6667 4 4.3333 | −11
0 0 6.8182 5.6364 | −9.0001
0 0 2.1818 3.3636 | −5.9999

•
−2.1818

6.8182
∗ 𝑅3 + 𝑅4

6 1 6 −5 | 6
0 −3.6667 4 4.3333 | −11
0 0 6.8182 5.6364 | −9.0001
0 0 0 1.5600 | −3.1199

Step 2: Backward substitution

1.56𝑥4 = −3.1199 → 𝒙𝟒 = −𝟏. 𝟗𝟗𝟗𝟗

6.8182𝑥3 + 5.6364𝑥4 = −9.0001 → 𝒙𝟑 = 𝟎. 𝟑𝟑𝟑𝟐𝟓

−3.6667𝑥2 + 4𝑥3 + 4.3333𝑥4 = −11 → 𝒙𝟐 = 𝟏. 𝟎

6𝑥1 + 𝑥2 + 6𝑥3 − 5𝑥4 = 6 → 𝒙𝟏 = −𝟎. 𝟓



SCALING

• Scaling is to normalize the equations so that the maximum coefficient in every row is equal to 1.0. That 

is, divide each row by the coefficient in that row with the maximum magnitude.

•  It is advised to scale a system before calculating its determinant. This is especially important if we are 

calculating the determinant to see if the system is ill-conditioned or not.

• Consider the following systems

2x1
 – 3x2

 = 5 20x1
 - 30x2

 = 50

3.98x1
 – 6x2

 = 7 39.8x1
 - 60x2

 = 70

• They are actually the same system. In the second one the equations are multiplied by 10.

• Determinant of the 1st system is 2(-6) – (-3)(3.98) = -0.06 , which is close to zero.

• Determinant of the 2nd system is 20(-60) – (-30)(39.8) = -6 , which is not that close to zero. 

• So, is this system ill-conditioned or not?



4.3.4 LU Decomposition Method

The Gauss elimination method can essentially be expressed as follows using matrix notation.

𝑨. 𝑥 = 𝑩
𝑨 = 𝑷. 𝑳. 𝑼

Here, P is the matrix expressing the row displacements during pivoting, L is the lower triangular matrix 

consisting of the multipliers used during the zeroing of the columns, and U is the upper triangular matrix 

reached in the Gauss elimination method.



By multiplying matrix L with matrix U and equalizing it to the corresponding element of A, the elements of matrices L 

and U are found as follows:

Note that, the order given below is followed to find the 

matrix elements.

…

L U

…



In the 2nd step, after the L and U matrices are found, first the intermediate value vector Ԧ𝑦 and then the unknown vector Ԧ𝑥  

are found by the following operations.

𝐿. Ԧ𝑦 = 𝑏 𝑈. Ԧ𝑥 = Ԧ𝑦

Example: Solve the following system of equations using the LU method. 𝑥1 + 2𝑥2 + 3𝑥3 = −3
2𝑥1 + 5𝑥2 + 2𝑥3 = −8

3𝑥1 + 𝑥2 + 5𝑥3 = 1

First, let's write the coefficient matrix and decompose to LU matrices.

𝐿11 = 1 𝐿21 = 2 𝐿31 = 3
𝐿11 ∗ 𝑈12 = 2 → 𝑈12 = 2 𝐿11 ∗ 𝑈13 = 3 → 𝑈13 = 3
𝐿21 ∗ 𝑈12 + 𝐿22 = 5 → 𝐿22 = 1 𝐿21 ∗ 𝑈13 + 𝐿22 ∗ 𝑈23 = 2 → 𝑈23 = −4
𝐿31 ∗ 𝑈12 + 𝐿32 = 1 → 𝐿32 = −5 𝐿31 ∗ 𝑈13 + 𝐿32 ∗ 𝑈23 + 𝐿33 = 5 → 𝐿33 = −24



Second, vector Ԧ𝑦 according to the expression 𝐿. Ԧ𝑦 = 𝑏 with forward sweep:

Using these values, the solution vector is found from the equation by the back sweep method.𝑈. Ԧ𝑥 = Ԧ𝑦



4.3.5 Gauss-Jordan Method

• This method is similar to the Gauss elimination method and has two stages. 

• In the first stage, the coefficients matrix (A) of the given system of linear equations is made diagonal by 

basic row operations.

• That is, the elements both below and above the matrix diagonal are reset to zero, and the diagonal element 

values are set to 1, as follows.

𝑎11 𝑎12 … 𝑎1𝑛 𝑏1
𝑎21 𝑎22 … 𝑎2𝑛 𝑏2
𝑎31 𝑎32 … 𝑎3𝑛 𝑏3
… … … … …
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛 𝑏𝑛

1 0 0 … 0 𝑏′1
0 1 0 … 0 𝑏′2
0 0 1 … 0 𝑏′3
… … … … … …
0 0 0 … 1 𝑏′𝑛



Example: Solve the following system of equations by Gauss-Jordan Method. 2𝑥2 + 𝑥4 = 0
2𝑥1 + 2𝑥2 + 3𝑥3 + 2𝑥4 = −2

4𝑥1 − 3𝑥2 + 𝑥4 = −7
6𝑥1 + 𝑥2 − 6𝑥3−5𝑥4=6

𝑅1 𝑅4

Pivoting

Divide 1st row (R1) by the diagonal element 6: (𝑅1/6)

𝑅1/6



Eliminate x1 from 2nd to 4th equations:

𝑅1 ∗ (−2) + 𝑅2

𝑅1 ∗ (−4) + 𝑅3

𝑅2 𝑅3

𝑅2/(−3.6667)

Divide 2nd row (R2) by the diagonal element -3.6667:



Eliminate x2 from 1st to 4th equations:

Divide 3rd row (R3) by the diagonal element 6.8182:

𝑅2 ∗ (−0.1667) + 𝑅1

𝑅2 ∗ (−1.6667) + 𝑅3

𝑅3/(6.8182)

𝑅3 ∗ (1.0909) + 𝑅2

𝑅3 ∗ (−2.1818) + 𝑅4

Eliminate x3 from 1st to 4th equations:



𝑅4/(1.5600)

Divide 4th row (R4) by the diagonal element 1.5600:

𝑅4 ∗ (−0.0400) + 𝑅1

𝑅4 ∗ (0.2800) + 𝑅2
𝑅4 ∗ (−0.8267) + 𝑅3

Eliminate x4 from 1st to 3rd equations:

𝑥1 = −0.5
𝑥2 = 1

𝑥3 = 0.3333
𝑥4 = −2

Solution:



NEXT WEEK
Solutions of Linear Equation Systems

Part II
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