ME 215 ENGINEERING MATERIALS I

TORSION TEST

Procedure of the test:

- 1. Measure the gauge length and diameter of the specimen.
- 2. Place the specimen into torsion test machine.
- 3. Set the torque-meter and angular twist scales to zero. Remain the water level horizontal.
- 4. Record the torque versus angle of twist at required intervals.

<u>Note</u>: The materials should be prepared in compliance with the standarts, the surface of the specimen should be clear/free from scratches and notches, the loading over the specimen have to be pure torsional, and any condition which may cause tension/compression or bending must be eliminated.

In your test reports:

- 1. Prepare a cover page includes student name and group number.
- 2. Write a short theory about shear properties of a material as an introduction.
- 3. Plot the graphs;
 - a. Torgue vs. angle of twist. [Nm vs degree]
 - b. Shear stress(τ) vs. shear strain(γ) [MPa vs mm/mm]. " τ =Tr/J , γ =r θ /L"
 - There should be 4 graphs in all, 2 for each specimen.
- 4. Determine yield torque (T_y) based on %0.2 offset of gauge length from Torgue (Nm) vs. angle of twist (degree) graph for each specimen. "offset=0.002xL₀"
- 5. Calculate;
 - a. Yield strength in torsion (S_{sy} [MPa=N/mm²]).

$$S_{sy} = \frac{T_y r}{J}$$
 where, J is the polar moment of inertia of the specimen.

"J=πd⁴/32 (for circular cross section)"

b. Stiffness (Modulus of rigidity [MPa=N/mm²])

$$G = \frac{T_e L_0}{\theta_e J} \qquad \text{where, } \mathsf{T}_e \text{ is any torque in elastic zone and } \mathsf{L}_0 \text{ is the gauge length.}$$

c. Modulus of resilience in shear (us [MPa=N/mm²])

$$u_s = \frac{T_y \theta_y}{2AL_0}$$
 or $u_s = \frac{S_{sy}^2}{4G}$

d. Plastic Shear Strength (Modulus of Rupture [MPa=N/mm²])

$$\mathbf{S}_{su} = \frac{T_{max}r}{J}$$

e. Toughness ([MPa=N/mm²])

$$T_0 = \frac{T_{max}\theta_f}{A.L_0}$$
 where, θf is angle of twist at fracture and A is the cross sectional area.

"Note: In the calculations, θ values will be taken as radian, 1 degree= $\pi/180=0.0174$ rad, and calculations will be made for each specimen.

6. Add a conclusion at the end of your report and discuss your results in this section.

Note: Do not forget to put this sheet into your test reports.

D₀=6mm

L₀=77mm

BRASS

D₀=6mm L₀=77mm

Torque (T) Angle (θ) (Nm) (Degree) 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 1rev=6 degree 1rev 1rev 1rev 1rev 2rev 2rev 2rev 2rev 2rev 5rev 5rev 5rev 5rev 10rev 10rev

Angle (θ)	Torque (T)
(Degree)	(Nm)
1	
1	
1	
1	
1	
1	
2	
2	
2	
2	
2	
2	
3	
<u>3</u> 3	
3	
1rev=6 degree	
1rev	
1rev	
1rev	
1rev	
2rev	
5rev	
5rev	
5rev	
5rev	
10rev	
10rev	
10101	