
ME 557 – Computer Applications

to Industrial Problems

Dr. Ali Tolga Bozdana

Dr. Sadık Olguner

Mechanical Engineering

University of Gaziantep

Genetic Algorithms

Introduction and Motivation
 G ti Al ith (GA) i iti ll d l d b J h H H ll d Genetic Algorithm (GA) was initially developed by John Henry Holland

(American scientist, professor of psychology and professor of electrical
engineering & computer science at University of Michigan) in 1970’s.

 It is a directed-search algorithm based on mechanics
of Darwin’s biological evolution theory. Initialg y

 In other words, it is based on survival of strong ones
in the population.

John H. Holland (1929)
Population

 GAs provide an efficient optimization methodology for
highly complex search spaces.

Fitness
Evaluation

Reproduction

 They are used in the best way when the objective
(fitness) function:

Selection of
New Population

Solution
Found?

NO

 is discontinuous
 is highly nonlinear
 is stochastic (statistically random)

p

YES

1

 is stochastic (statistically random)
 has unreliable or undefined derivatives

End
Process

Some Terminology
 Any feasible possible solution: individual Any feasible possible solution: individual
 Group of all individuals: population
 Blueprint (string) of an individual: chromosomep (g)
 Possible feature (aspect) of an individual: gene
 Possible setting (black, blond, etc.) of a gene: allele (1 – dominant, 0 – recessive)
 Collection of all chromosomes for an individual : genome
 Particular set of genes in a genome: genotype
 P h i l h t i ti (t b tif l h lth t) f t h t

genotype

 Pyhsical characteristics (smart, beautiful, healthy, etc.) of a genotype: phenotype

genechromosome

0 1 1 1 0 1 0
allele

g

tio
n

1 0 1 1 0 0 1

. .
 .

.

po
pu

la
t

.
0 1 1 0 1 1 0

2

Evolutionary Cycle
Parental SelectionParental Selection
• Random (roulette wheel)
• Best-fitting (tournament)
• Individual fitness (weighted average)

Chromosome Modification
• Crossover (recombination of genes)
• Mutation (replacement of local genes)

d ti difi ti
children

(g g)
• Rank-based (linear, exponential, ...)

reproduction modification

parents modified
children

population evaluation

children

evaluated
h ld

initiation

deleted
members

children

Result Evaluation

Representation (Coding)
• Bit strings (0101, 1100)
• Real numbers (43 2 33 1)

discard
Result Evaluation
• decoding the chromosomes
• assigning their fitness values
• fitness ranking• Real numbers (43.2, -33.1)

• Text (“high”, “red”)
• any data structure

Elimination
• discarding bad solutions

(having low fitness) 3

Representation (Coding)
 Parameters of the solution (genes) are bound to form a string (chromosome) Parameters of the solution (genes) are bound to form a string (chromosome).

 Good coding is probably the most important factor for the performance of a GA.

 A l h b t b d (b h t t) b t bi l h b t i f d Any alphabet can be used (numbers, characters, etc.), but binary alphabet is preferred.

 See the following links for conversion of decimal & binary numbers:
http://en wikipedia org/wiki/Binary numeral systemhttp://en.wikipedia.org/wiki/Binary_numeral_system
http://www.mathsisfun.com/numbers/convert-base.php

Genotype spacePhenotype space
Encoding

(representation)(representation)

10010010

01000100

01101000

Decoding
(inverse representation)

4

Modification – Crossover
 Two parents produce two children (offspring) Two parents produce two children (offspring).
 Chromosomes of parents are copied unmodified or randomly recombined.
 The chance (probability) of crossover is generally between 0.6 and 1.(p y) g y

parents

Single-point crossover

parents

Multi-point crossover

parents

Uniform (mask) crossover

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

parents

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

parents

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

parents

0 0

k (d l t d)

1 1 1 1 1 1 1 0 0 0

children

0 0 1 1 1 1 1 0 0 0

children 1 1 0 1 0 0 0 1 1 0

mask (randomly generated)

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1

0 0 1 0 1 1 1 0 0 1

children

0 0 1 0 1 1 1 0 0 1

1 1 0 1 0 0 0 1 1 0
5

Modification – Mutation
 Section(s) of a randomly selected chromosome is permitted to mutate (change) Section(s) of a randomly selected chromosome is permitted to mutate (change).
 Mutation probability is in the range of 1/population size & 1/chromosome length.
 Hence, the chance of mutation is generally quite low (about 0.001)., g y q ()

1 1 1 1 1 1 1 1 1 1

parent

1 1 0 1 1 1 1 0 1 0

child

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0

Crossover or Mutation?Crossover or Mutation?

 It depends on the problem. In general, it is good to have both.

 Th i ti AND titi b t th There is co-operation AND competition between them:
 Crossover is explorative: it makes a big jump to an area somewhere “in between”

two (parent) areas.
 Mutation is exploitative: it creates random small diversions, thereby staying “near

(in the area of)” the parent.

 “Only crossover” can combine information from two parents. On the other hand, “only
mutation” can introduce new information (alleles).

6

A Case Study
 Find the nearest integer value of x for 0 ≤ x ≤ 12 to maximize y (x) = −0 2 (x2) + 2 5 (x) Find the nearest integer value of x for 0 ≤ x ≤ 12 to maximize y (x) = 0.2 (x) + 2.5 (x)
 Use population size of 4 having 4-bit chromosomes

1st run pick two x values new population
0 1 1 1

0 1 0 0

1 run
x y
4 6.8
1 2 3

p
(giving ymax) and
convert into 4-bit
chromosomes:

0 1 1 0

0 1 0 1

x = 6

x = 5
1 2.3
7 7.7
10 5.0

x 4-bit
7 0 1 1 1
4 0 1 0 0

0 1 1 1

0 1 0 0

0 1 0 0

0 1 1 1

x = 2

x = 7

0 0 1 0

0 1 1 0
2nd run
x y

pick two x values
(giving ymax) and 0 1 1 1 x = 7

new population

0 1 1 0

0 1 1 1

x y
6 7.8
5 7.5
2 4 2

convert into 4-bit
chromosomes:

x 4-bit

0 1 1 1

0 1 1 0

x 7

x = 6

1 0 1 0 1 0 1 1 x = 110 1 1 02 4.2
7 7.7

6 0 1 1 0
7 0 1 1 1

1 0 1 0

0 1 1 1

1 0 1 1

0 1 1 0

x = 11

x = 6

0 1 1 0

0 1 1 1

3rd

run
x 7 6 11 6
y 7.7 7.8 3.3 7.8

The optimum solution:
x = 6

Convergence to solution depends
upon choice of population size, x
values, crossover, mutation, etc.

Pros & Cons

P f GA C f GAPros of GA

 Concept is easy to understand.

Cons of GA

 Issues with choosing parameters:
Population size Modular (i.e. separate from application).

 Supports multi-objective optimization.

 Population size
 Crossover and mutation probabilities
 Selection

 Good for “noisy” environment.

 Always results in an answer, which becomes
b tt d b tt ith ti

 Issues with performance:
 can be too slow (a large search space)better and better with time.

 Can easily run in parallel.

 can be too slow (a large search space)
 only as good as the fitness function

 Fitness function can be changed from iteration
to iteration, which allows incorporating new
data in the model if it becomes available.data in the model if it becomes available.

8

Applications

Encryption &
Code

Breaking

Gaming &
Game Theory

Finance &
Investment
Strategies

Engineering
Design

Robotics &
Trajectory
Planning

Evolvable
Hardware

Routing &
Scheduling

http://brainz.org/15-real-world-applications-genetic-algorithms/ 9

Example: Travelling Sales Person (TSP) Problem
 Problem: find a tour of given set of cities (e g for 30 cities there are 30! ≈ 1032 possibilities) Problem: find a tour of given set of cities (e.g. for 30 cities, there are 30! ≈ 1032 possibilities)
 Objective: the total distance travelled will be minimized
 Constraint: each city must be visited only oncey y
 Cities: 1) London 2) Istanbul 3) Beijing 4) New York 5) Rome 6) Barcelona 7)
 Initial population: (3 5 2 1 6 4 7 ...), (1 5 7 4 6 3 2 ...), (7 6 2 1 3 5 4 ...),

TSP30 (the problem) TSP30 (distance = 941) TSP30 (distance = 800)

TSP30 (distance = 652) TSP30 (distance = 420) TSP30 (overall performance)

Example: Genetic Vectorizing
 This GA algorithm was developed by Roger Alsing This GA algorithm was developed by Roger Alsing.

 The idea is to regenerate an image using polygons.

 Polygons are created in a population of chromosomes Polygons are created in a population of chromosomes,
and they try to evolve in order to fit the source image.

 The image was regenerated with 50 semi-transparent
ORIGINAL REGENERATEDpolygons after 904314 iterations.

 As the regeneration is based on vectors, future works
bl ti bj t ith 3D i tmay enable recreating objects with a 3D printer.

http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

11

The image starts with random
polygons.

Each attempt is scored against
the real image.

The iterative process results in
incremental improvements.

…and viola! Evolution yields
the Mona Lisa “code”.

