
 1 

 

 

IE 141 

Computer Programming I 

 (Using Octave®) 
 

                                          2019–2020 Fall 
 

Part I 
 

 

Textbooks 

 [Nagar  2018] Introduction to Octave for Engineers and Scientists. 

[Farrell  2015] Programming Logic and Design - Comprehensive Version 8e. 

 



 2 

 COMPUTER SYSTEMS 

 A computer system is a combination of multiple pieces of hardware and software 
required to process and store data using a computer. 

 Hardware is the equipment, or the physical devices, associated with a computer. For 
example, keyboards, mice, speakers, and printers are all hardware. 

 Software is a set of programs. 

 Programs are instruction sets written by programmers that tell the hardware what to 
do.  

 When you write software instructions, you are programming.  

 This course focuses on the programming process. 

 

 

 Software can be classified into two broad types:  

 Application software comprises all the programs you apply to a task, such as 
wordprocessing programs, spreadsheets, payroll and inventory programs, and games. 
When you hear people say they have “downloaded an app onto a mobile device,” they 
are simply using an abbreviation of application.  

 System software comprises the programs that you use to manage your computer, 
including operating systems such as Windows, Linux, or UNIX for larger computers and 
Google Android and Apple iOS for smartphones.. 

 Together, computer hardware and software accomplish three major operations in most 
programs:  

 Input: Data items enter the computer system and are placed in memory, where they 
can be processed. Hardware devices that perform input operations include keyboards 
and mice. Data items include all the text, numbers, and other raw material that are 
entered into and processed by a computer, such as, facts and figures about entities, 
images, sounds, and a user’s mouse or finger-swiping movements.  

 Processing: Processing data items may involve organizing or sorting them, checking 
them for accuracy, or performing calculations with them. The hardware component 



 3 

that performs these types of tasks is the central processing unit, or CPU. Some devices, 
such as tablets and smartphones, usually contain multiple processors. Writing programs 
that efficiently use several CPUs requires special techniques.  

 Output: After data items have been processed, the resulting information usually is 
sent to a printer, monitor, or some other output device so people can view, interpret, 
and use the results. Programming professionals often use the term data for input items, 
but use the term information for data that has been processed and output. Sometimes 
you place output on storage devices, such as your hard drive, flash media, or a cloud-
based device. (The cloud refers to devices at remote locations accessed through the 
Internet.) When you send output to a storage device, sometimes it is used later as input 
for another program.  

 You write computer instructions in a computer programming language such as Visual 
Basic, C#, C++, or Java. 

 The instructions you write using a programming language are called program code; when 
you write instructions, you are coding the program. 

 Every programming language has rules governing its word usage and punctuation. These 
rules are called the language’s syntax. Mistakes in a language’s usage are syntax errors. 
Unless the syntax is perfect, the computer cannot interpret the programming language 
instruction at all. 

 When you write a program, you usually type its instructions using a keyboard. 

 When you type program instructions, they are stored in computer memory, which is a 
computer’s temporary, internal storage. Random access memory, or RAM, is a form of 
internal, volatile memory. Programs that are currently running and data items that are 
currently being used are stored in RAM for quick access.  

 Internal storage is volatile—its contents are lost when the computer is turned off or 
loses power.  

 Usually, you want to be able to retrieve and perhaps modify the stored instructions 
later, so you also store them on a permanent storage device, such as a disk. Permanent 
storage devices are nonvolatile—that is, their contents are persistent and are retained 
even when power is lost.  

 

 



 4 

 After a computer program is typed using programming language statements and stored in 
memory, it must be translated to machine language. Machine language is also called 
binary language, and is represented as a series of 0s and 1s. 

 Your programming language statements are called source code, and the translated 
machine language statements are object code.  

 Each programming language uses a piece of software, called a compiler or an 
interpreter, to translate your source code into machine language.  

 Although there are differences in how compilers and interpreters work, their basic 
function is the same—to translate your programming statements into code the 
computer can use. When you use a compiler, an entire program is translated before it 
can execute; when you use an interpreter, each instruction is translated just prior to 
execution. Usually, you do not choose which type of translation to use—it depends on 
the programming language.  

 After a program’s source code is successfully translated to machine language, the 
computer can carry out the program instructions. When instructions are carried out, a 
program runs, or executes. In a typical program, some input will be accepted, some 
processing will occur, and results will be output.  

 Besides the popular, comprehensive programming languages such as Java and C++, 
many programmers use scripting languages (also called scripting programming 
languages or script languages) such as Python, Lua, Perl, and PHP.  

 Scripts written in these languages usually can be typed directly from a keyboard 
and are stored as text rather than as binary executable files. 

 Scripting language programs are interpreted line by line each time the program 
executes, instead of being stored in a compiled (binary) form.  

 Still, with all programming languages, each instruction must be translated to machine 
language before it can execute. 

  



 5 

Paradigms of Programming 

A programming paradigm is a fundamental style of programming based on distinct concepts 
that shape the way programmers design, organize and write programs. 

Each paradigm is not just a programming style but usually involves an end-to-end approach 
for building systems, including analysis, design, implementation, testing, deployment and 
maintenance. 

 Procedural (Structured, Imperative) Programming 

 Control structures govern the order of execution of computational steps called 
commands. 

 Similar to descriptions of everyday routines, such as food recipes. 

 Typical commands offered by imperative languages are assignment, I/O, procedure calls. 

 Abstracts one or more actions into a procedure, which can be called as a single 
command (Procedural Programming). 

 Object-Oriented Programming 

 Based on models of human interaction with real world phenomena. 

 Data as well as operations are encapsulated in objects. 

 Information hiding is used to protect internal properties of an object. 

 Objects interact by means of message passing which applies an operation on an object. 

 Objects are created by using templates called classes. This allows the programming of 
the classes, as opposed to programming of the individual objects. 

 Classes are organized in inheritance hierarchies which provides for class extension or 
specialization. 

 Declarative Programming 

 Expresses the logic of a computation without describing its control flow (tells what to do, 
not how to do it). 

 Common declarative languages include those of database query languages (e.g., SQL, 
XQuery),  regular expressions, logic programming,  functional programming, and 
configuration management systems.  

 Functional Programming 

 Based on mathematical theory of functions. 

 The values produced are non-mutable. 

 Impossible to change any constituent of a composite value. 

 However, it is possible to make a revised copy of composite value. 

 All computations are done by applying (calling) functions. 

 Functions are first class values. 

 All computations are done by applying (calling) functions. 



 6 

 Functions are first class values. 

 Logic Programming 

 Answers a question via search for a solution. 

 Based on axioms, inference rules, and queries (i.e., automatic proofs within artificial 
intelligence). 

 Program execution becomes a systematic search in a set of facts, making use of a set 
of inference rules. 

 Many other programming paradigms exist (constraint programming, symbolic 
programming, generic programming, + about 30 more at the time of writing). 

 For this course, we use a scientific procedural language. 

 Scientific procedural languages: To simplify small proof-of-principle computations, 
specialized scientific languages such as MATLAB®, and Octave® and symbolic manipulation 
languages such as MAPLE® or Mathematica® provide an easily learned high-level user 
interface to a unified built-in array of easily called and highly optimized numerical, scientific 
and graphical libraries.  

 MATLAB code can be transformed into C++ through an add-on product while C++ and 
FORTRAN routines can be called by a MATLAB program with some effort.  

 MATLAB is unavailable at many sites because of its substantial cost, although this can, 
however, increasingly be circumvented, through free software packages that imitate 
MATLAB commands. This course accordingly employs the most widely employed 
alternative, GNU Octave. 

  
  



 7 

 UNDERSTANDING SIMPLE PROGRAM LOGIC 
 

 A programmer’s job involves writing instructions (such as those in the doubling program in 
the preceding section), but a professional programmer usually does not just sit down at a 
computer keyboard and start typing. The program development cycle can be broken down 
into at least seven steps:  

1. Understand the problem.  
2. Plan the logic.  
3. Code the program.  
4. Use a compiler or interpreter to translate the program into machine language. 
5. Test the program. 
6. Put the program into production. 
7. Maintain the program.  

  Understanding the Problem: Professional computer programmers write programs to 
satisfy the needs of others, called users or end users.  

 Examples of end users include a Human Resources department that needs a printed list 
of all employees, a Billing department that wants a list of clients who are 30 or more 
days overdue on their payments, and an Order department that needs a Web site to 
provide buyers with an online shopping cart.  

 Because programmers are providing a service to these users, programmers must first 
understand what the users want. When a program runs, you usually think of the logic as 
a cycle of input-processing-output operations, but when you plan a program, you think 
of the output first.  

 After you understand what the desired result is, you can plan the input and processing 
steps to achieve it.  

 Suppose the director of Human Resources says to a programmer, “Our department 
needs a list of all employees who have been here over five years, because we want 
to invite them to a special thank-you dinner.” 

 On the surface, this seems like a simple request. An experienced programmer, 
however, will know that the request is incomplete. For example, you might not 
know the answers to the following questions about which employees to include:  

 Does the director want a list of full-time employees only, or a list of full- and 
part-time employees together?  

 Does she want to include people who have worked for the company on a 
month-tomonth contractual basis over the past five years, or only regular, 
permanent employees?  

 Do the listed employees need to have worked for the organization for five years 
as of today, as of the date of the dinner, or as of some other cutoff date?  

 What about an employee who worked three years, took a two-year leave of 
absence, and has been back for three years?  



 8 

 The programmer cannot make any of these decisions; the user (in this case, the 
Human Resources director) must address these questions.  

 More decisions still might be required. For example:  

 What data should be included for each listed employee?  

 Should the list contain both first and last names? Social Security numbers? 
Phone numbers? Addresses?  

 Should the list be in alphabetical order? Employee ID number order? Length-of-
service order? Some other order?  

 Should the employees be grouped by any criteria, such as department number 
or years of service?  

 Several pieces of documentation are often provided to help the programmer 
understand the problem. Documentation consists of all the supporting paperwork for a 
program; it might include items such as original requests for the program from users, 
sample output, and descriptions of the data items available for input.  

 Understanding the problem might be even more difficult if you are writing an app that 
you hope to market for mobile devices. Business developers are usually approached by 
a user with a need, but successful developers of mobile apps often try to identify needs 
that users aren’t even aware of yet. For example, no one knew they wanted to play 
Angry Birds or leave messages on Facebook before those applications were developed.  

 Mobile app developers also must consider a wider variety of user skills than 
programmers who develop applications that are used internally in a corporation. 
Mobile app developers must make sure their programs work with a range of screen 
sizes and hardware specifications because software competition is intense and the 
hardware changes quickly.  

 Fully understanding the problem may be one of the most difficult aspects of 
programming. On any job, the description of what the user needs may be vague—worse 
yet, users may not really know what they want, and users who think they know 
frequently change their minds after seeing sample output. 

  Planning the Logic: The heart of the programming process lies in planning the 
program’s logic. During this phase of the process, the programmer plans the steps of the 
program, deciding what steps to include and how to order them.  

 You can plan the solution to a problem in many ways. The two most common planning 
tools are flowcharts and pseudocode. Both tools involve writing the steps of the 
program in English. 

 Programmers refer to planning a program as “developing an algorithm.” An algorithm 
(see the end of the section for the meaning) is the sequence of steps or rules you follow 
to solve a problem. 

 In addition to flowcharts and pseudocode, programmers use a variety of other tools to 
help in program development.  

 One such tool is an IPO chart, which delineates input, processing, and output tasks.  



 9 

 Some object-oriented programmers also use TOE charts, which list tasks, objects, 
and events.  

 Storyboards and UML are frequently used in interactive, object-oriented 
applications.   

 The programmer shouldn’t worry about the syntax of any particular language during the 
planning stage, but should focus on figuring out what sequence of events will lead from 
the available input to the desired output. Planning the logic includes thinking carefully 
about all the possible data values a program might encounter and how you want the 
program to handle each scenario.  

  Coding the Program: After the logic is developed, only then can the programmer write 
the source code for a program. Hundreds of programming languages are available. 
Programmers choose particular languages because some have built-in capabilities that 
make them more efficient than others at handling certain types of operations. Despite 
their differences, programming languages are quite alike in their basic capabilities—each 
can handle input operations, arithmetic processing, output operations, and other standard 
functions. The logic developed to solve a programming problem can be executed using any 
number of languages. Only after choosing a language must the programmer be concerned 
with proper punctuation and the correct spelling of commands—in other words, using the 
correct syntax. 

  Use a Compiler or Interpreter to Translate the Program into Machine Language: Even 
though there are many programming languages, each computer knows only one 
language—its machine language, which consists of 1s and 0s. 

 Computers understand machine language because they are made up of thousands of 
tiny electrical switches, each of which can be set in either the on or off state, which is 
represented by a 1 or 0, respectively.  

 Languages like Java or Visual Basic are available for programmers because someone has 
written a translator program (a compiler or interpreter) that changes the programmer’s 
English-like high-level programming language into the low-level machine language 
that the computer understands. 

 When you learn the syntax of a programming language, the commands work on any 
machine on which the language software has been installed. However, your commands 
then are translated to machine language, which differs in various computer makes and 
models.  

 If you write a programming statement incorrectly, the translator program doesn’t know 
how to proceed and issues an error message identifying a syntax error. Although 
making errors is never desirable, syntax errors are not a programmer’s deepest 
concern, because the compiler or interpreter catches every syntax error and displays a 
message that notifies you of the problem. The computer will not execute a program 
that contains even one syntax error.  

 Typically, a programmer develops logic, writes the code, and compiles the program, 
receiving a list of syntax errors. The programmer then corrects the syntax errors and 
compiles the program again.  



 10 

 Correcting the first set of errors frequently reveals new errors that originally were not 
apparent to the compiler.  

  Testing the Program: A program that is free of syntax errors is not necessarily free of 
logical errors.  
 A logical error results when you use syntactically correct statements but the program 

doe not produce the intended results.  
 Once a program is free of syntax errors, the programmer can test it—that is, execute it 

with some sample data to see whether the results are logically correct.  
 The process of finding and correcting program errors is called debugging. You debug a 

program by testing it using many sets of data.  
 Selecting test data is somewhat of an art in itself, and it should be done carefully 

  Putting the Program into Production: Once the program is thoroughly tested and 
debugged, it is ready for the organization to use. Putting the program into production 
might mean simply running the program once, if it was written to satisfy a user’s request 
for a special list. However, the process might take months if the program will be run on a 
regular basis, or if it is one of a large system of programs being developed. Perhaps data-
entry people must be trained to prepare the input for the new program, users must be 
trained to understand the output, or existing data in the company must be changed to an 
entirely new format to accommodate this program. Conversion, the entire set of actions 
an organization must take to switch over to using a new program or set of programs, can 
sometimes take months or years to accomplish.  

  Maintaining the Program: After programs are put into production, making necessary 
changes is called maintenance.  
 Maintenance can be required for many reasons: for example, because new tax rates are 

legislated, the format of an input file is altered, or the end user requires additional 
information not included in the original output specifications.  

 Frequently, your first programming job will require maintaining previously written 
programs. When you maintain the programs others have written, you will appreciate 
the effort the original programmer put into writing clear code, using reasonable 
variable names, and documenting his or her work.  

 When you make changes to existing programs, you repeat the development cycle. That 
is, you must understand the changes, then plan, code, translate, and test them before 
putting them into production. If a substantial number of program changes are required, 
the original program might be retired, and the program development cycle might be 
started for a new program. 

  



 11 

Alıntı: Cesur Baransel, Dünyada Önde Gelen Bilgisayarcılar, Türkiye Bilişim 
Ansiklopedisi, pp. 333-343, Papatya Yayıcılık, İstanbul, 2006. 

Harezmli Muhammed (780(?) - 850) 

M.S. 830 yıllarında Abbasi halifesi Memun, Harezmli Muhammed’e aşağıdaki buyruğu verir: 

“Yalnızca en kolay ve en gerekli olan aritmetiği kullanarak, cebir ve mukabele kuralları ile hesaplama üzerine kısa 
bir kitap yaz. Öyle ki bu kitap, miras paylaşımında, zekât hesaplamada, ticari anlaşmalarda, kanalların 
kazılmasında, arazilerin ölçülmesinde ve benzer diğer işlemlerde kolaylıkla kullanılabilsin”.  

Harezmli bunun üzerine Al Kitab-ül Muhtasar Fi Hesab Al-Cebr Ve’l Mukabele adlı, onlu sayı sistemi ve denklemler 
yoluyla sorun çözme yöntemlerinin ilk kez anlatıldığı ünlü kitabını yazar. Tarihteki ilk cebir kitabı olarak kabul 
edilen bu kitap matematik tarihindeki en önemli yapıtlardan birisi olup İngilizce’deki “algebra” sözcüğü kitabın 
adındaki “al-cebr” sözcüğünden gelmektedir.  

Kitabın matematik tarihindeki önemi özellikle matematik tarihi konulu kitaplarda ayrıntısı ile yer almaktadır. 
Ancak bu kitap bilgisayar bilimleri açısından da ayrı bir öneme sahiptir. Harezmli, kitabın geniş kitleler tarafından 
kullanılabilmesini sağlamak üzere günlük yaşamda çözülmesi gereken sorunları sistemli olarak sınıflamış ve her 
sorun türü için geçerli genel çözüm biçimleri oluşturmuştur. Her çözüm, sonlu sayıda ve iyi tanımlanmış adımlar 
içeren reçeteler biçiminde okuyucuya sunulmuş ve böylece matematikçi olmayan kişiler tarafından da etkinlikle 
kullanılabilmesi sağlanmıştır. Genel amaçlı bir çözümün, birbirini izleyen adımlar biçiminde ve her adımın çözüm 
reçetesini uygulayan kişinin en küçük bir duraksamaya düşmesine olanak bırakmayacak yalınlıkta ve kesinlikte 
tanımlanması yöntemi Harezmli’nin buluşudur. Bu yöntem Harezmli’nin adıyla anılmakta olup batı dillerinde 
“algorismus” “algorism”, “algorithme”, “algorithm” gibi biçimlerde kullanılmaktadır. Harezmli kitabını o zamanın 
bilim dili olan Arapça yazmıştı. Kitap “Liber Algebre et Almochabolae” başlığı ile 1183 yılında İspanya’da ilk kez 
Latince’ye çevrilirken, Arapça’da “Ebu Cafer Muhammed bin Musa Al-Harezmî” olarak geçen yazar adı, “Mahmed 
Moysi Alguarizmi” olarak aktarılmıştır. Yöntemin batı dillerindeki biçiminin kaynağı bu Latince tercümedeki 
“Alguarizmi” soyadıdır (Bu ad Avrupa’da çeşitli kaynaklarda Al-Quarizmi, Al-Kuarithmi ve Algoritmi olarak da 
geçer. Arapça sesbirimlerinin çevriyazımında hırıltılı h’nın kh, g ya da q’ye, peltek z’nin th’ye dönüşmesi sık 
görülür). Osmanlılar, Harezmli’nin yöntemini “Harezmiyet” yani “Harezmli Yolu” olarak adlandırmışlardır. 
Günümüz Türkçe’sinde ise bu kavrama karşılık olarak “Harezmli Yolu” ya da kısaca “Harezmlice” sözcüğü 
kullanılmaktadır.  

Harezmli, Batı kaynaklarında çoğunlukla Arap ve bazen de Acem kökenli olarak anılmaktadır. Bazı kaynaklarda ise 
milliyetinden söz edilmeksizin İslam düşünürü ve matematikçisi olarak yer alır. Harezmli’nin yaşadığı dönem 
Abbasi imparatorluğunun (749-1258) en parlak dönemidir. Dönemin halifesi Memun (813-833) ve babası Harun 
Reşid doğu Hindistan’dan İspanya’ya dek uzanan ülke sınırları içerisindeki bilim adamlarını Bağdat’ta kurdukları 
“Dar-Ül Hikme (Bilgeler Evi)” adlı o zamanın araştırma merkezinde bir araya getirerek çalışmalarına destek 
olmuşlar ve burada çalışanlara maaş bağlamışlardı. Harezmli doğup büyüdüğü yer olan Harezm’den 810 yıllarında, 
otuz yaşlarında iken, çağrı üzerine Bağdat’a gelerek Dar-Ül Hikme’nin başına geçmiş ve 850 yılında ölümüne değin 
Bağdat’da yaşamıştır. Dar-Ül Hikme 800-1100 yılları arasında Dünya’nın bilim ve kültür merkezi olma özelliğini 
korumuştur. Ancak bundan önceki Emevi döneminde, yaklaşık 670-740 yılları arasındaki 70 yıllık dönemde Araplar 
ve Türkler arasında sürekli savaşlar yaşanmıştır. Buhara’nın 673’de kuşatılması ile başlayan ve Baykent, Talkan ve 
Curcan katliamlarına sahne olan bu dönemde Aral Gölü’nün altındaki Harezm bölgesi Emevilerin Horasan valisi 
Kuteybe tarafından işgal edilir. İşgal sırasında yaşanan talan ve yıkım ve yazılı dil bilenler dâhil tüm bilginlerin 
kılıçtan geçirildiği olaylar Harezmli ünlü Türk bilgini Biruni tarafından ayrıntısıyla yazılmıştır. Bu olaylardan ancak 
bir yüz yıl kadar sonra kendisine El-Harezmî (Harezmli kişi) dedirten, Türkçe çevirmenlik yapan ve Harezm’de 
doğup yetişen birisinin Arap kökenli olma olasılığı pek yoktur. Dolayısıyla cebirin babasının ve algoritma 
kavramının yaratıcısının Türk olma olasılığı çok daha yüksektir.  

 

  



 12 

 OCTAVE GUI 

 Octave’s GUI looks quite similar to MATLAB’s GUI. The left side has three panels: 
 

 
 

 File Browser: You can browse through the files in a working directory and change the 
names. You can run an .m file by clicking on the file. The file opens in the Editor window 
and can be run from there.  

 Workspace: It stores the variables names, values, and their properties like types and 
sizes. It is useful for developers to visualize the variables and their contents. The 
meaning of variables and their values, sizes, etc. is illustrated in subsequent chapters.  

 Command History: It stores the commands used in an Octave session. A command can 
be run by simply clicking it in command window. It is then executed at Octave 
command prompt.  

 All three panes are optional and can be closed down for a session by clicking the cross sign 
in the upper-right.  

 On the right side, there is a pane named Command Window. The bottom part of the 
Command window includes three tabs:  

 Command window  

 Editor  

 Documentation  

 The Command window takes input one line at a time.  

 The Editor window is used to write an “.m script file” that can then be executed.  



 13 

 The Documentation window can be used to read documentation and seek help to learn 
more about commands. Octave has an extensive documentation that enables a beginner 
to learn Octave with nothing but a command line. It also helps an experienced user who 
can seek help in using less common commands.   

 Sometimes you’ll need to obtain a clear screen, which is what the clc command does. 

 When you start an Octave session, you can work in an interactive session in the sense that 
the Octave prompt >> waits for you to input a command, which will be executed as soon 
as you press the Enter key at the end of command.  

 The Octave command prompt presents a full-featured interactive command-line 
commonly called REPL (read-eval-print loop). The interactive shell of the Octave 
programming language is commonly called REPL because it:  

 Reads what a user types  

 Evaluates what it reads  

 Prints out the return value after evaluation  

 Loops back and does it all over again  
 

Working with Files 

 Apart from working on Octave REPL, you can write multi-line programs using the built-in 
text editor in Octave and run the program.  

 This can be created by typing edit helloagain at the Octave command prompt. A new file 
called helloagain.m will be created in a folder/directory in which the present session of 
Octave is running.  

 Alternatively, the program can also be created in the editor by clicking on the lowermost 
part of the Command Window, which has an option named Editor. This opens a blank 
editor window in which the helloagain.m code can be written manually. You can then save 
the file using Ctrl+S.  

 Note that all Octave script files are saved with an .m extension. You can open the existing 
file by navigating to the appropriate folder and choosing the file in the explorer. 
 
  disp("\nHello World!\n") 
  disp("Hello again\n") 

Listing. The helloagain.m File 

 The \n character in the string input is used to print a newline character, which simply adds 
a paragraph return and prints the next characters on a new line.  

 The disp() function prints the string at the command prompt.  

 You have many options for running an Octave file:  

 You can simply type the name of file (without the extension) at the Octave command 
prompt. For example, by typing helloagain. 

 From the Editor menu, you can click on Run and choose Save File and Run. 



 14 

 You can also choose to click the given key combination. It prompts you to save the file if 
the script file is being run for the first time. You can choose to save the file at a chosen 
destination within the local computer’s storage. 

 In any case, the output is displayed at the command prompt, unless graphical output is 
directed to a graphical terminal.  

 These two methods of working with Octave (using REPL and using files) each has its own 
merits and usage. Interactive sessions are best for quickly checking for a small part of 
complex code. Files are best with a project involving detailed calculations and are linked 
with one another to perform a computational task. 

 

Using the Workspace 

 A workspace is the space in the memory reserved for objects in the Octave session.  

 All the objects used in calculations are displayed. This is usually placed as the second 
option in the left panel of the main Octave session window.  

 The command clear clears all global and local variables in the workspace and makes it 
fresh, just as when an Octave session is initially launched. 

 If the semicolon symbol ; is used at the end of a command, the output is not displayed 
upon the execution of the command. This is useful when you expect too much output 
would be displayed. For example, when you are dealing with a multitude of data points, 
say a million data points, it would be pointless to invest time and computer memory in 
displaying them at Octave’s command prompt.  

 This feature can also be used within Octave scripts, when you don’t want to print a 
particular output at the command prompt. 

 

Octave as a Calculator 

 In its simplest form, Octave works as a calculator with mathematical operators like 
multiplication (*), division (/), addition (+), subtraction (-), and exponentiation (^). The 
following code illustrates this behavior: 

 
 >> 3+5  
    ans = 8  
 >> 3.0+5.0  
    ans = 8  
 >> 3.1+5.0  
    ans = 8.1000  
 >> 2-3  
    ans = -1  
 >> 3.0*5  
    ans = 15  
 >> 2/3  
    ans = 0.66667  

 When a command is entered at the Octave REPL command prompt >>, it is executed and 
an answer is displayed in the next line as ans =.  



 15 

 Ans is a global variable that stores the value of the last executed expression. The 
commands written at Octave REPL are called expressions and are evaluated by REPL.  

 A number of physical constants are defined as follows: pi, e (Euler’s number), i and j (the 

imaginary number √   ), inf (infinity), and NaN (not a number, which results from 
undefined operations such as Inf/Inf). 

  >> pi 
     ans = 3.1416 
  >> e 
     ans = 2.7183 
  >> i 
     ans = 0 + 1i 
  >> j 
     ans = 0 + 1i 
  >> Inf/Inf 
     ans = NaN 

 

 A number of built-in mathematical functions exist in Octave. A few of the more common 
ones are:  

 Absolute value abs()  

 Natural logarithm log() 

 Base-10 logarithm log10()  

 Trigonometric functions sin(), cos(), and tan(). Arguments are taken in radians. 

 Inverse-trigonometric functions asin(), acos(), and atan(). 

 

Using Variables 

 Until now, we have been feeding numbers into Octave REPL with on-the-spot evaluation. 
Alternatively, you can designate a memory location where values are stored and this 
memory location can be known by a name for ease of usage. Such a programming 
construct is known as a variable. 

 To store values temporarily, you use variables that store the value at a particular memory 
location and address it with a symbol or set of symbols (called strings). For example, you 
can store the value of 1/10*pi as a variable a and then use it in an equation:  

  >> a=1/10*pi  
     a = 0.31416  
  >> aˆ2 + 10* sqrt(a)  
     ans = 5.7037  

 The symbol = works as an assignment operator because it assigns the value on the right 
side to the variable name on the left side. Its behavior is markedly different than its 
mathematical counterpart (which checks the equality of its right side and left side).  

 Multiple assignments can be performed using the comma (,) operator. Also if you do not 
want to produce results on-screen, you can suppress this by using the ; operator. Try the 
following commands: 



 16 

  >> a1 = 1, a2 = 10, a3 = 100 
  >> a1 = 1, a2 = 10, a3 = 100; 
  >> a1 = 1; a2 = 10; a3 = 100; 

 While assigning data to a variable, it is important to understand that data can be defined 
as a variety of objects defined by a data type, as follows:  

 Logical: This type of data stores boolean values 1 or 0. Boolean values can be operated 
on by boolean operators, like AND, OR, XOR, etc.  

 Char: This type of data stores alphabetic characters and strings (groups of characters 
written in a sequence).  

 Int8, int16, int32, and int64: This type of data is stored as integers within 8 bits, 10 
bits, 32 bits, and 64 bits. The size of the integer is given by its bit counts. Both logical 
and char are 1 byte (8 bits) wide.  

 uint8, uint16, uint32, and uint64: This type of data stores unsigned integer data in 8, 
16, 32, and 64 bits.  

 double, single: This type of data is stored as double and single precision floating types, 
respectively. Decimal numbers are represented by floating point data types. Single 
precision occupies 4 bytes (32 bits) and double precision occupies 8 bytes (64 bits) to 
store the floating point numbers.  

  



 17 

 

 CONTROL STRUCTURES 

 The normal flow of control in an Octave script is sequential, i.e. each program statement is 
executed in sequence, one after the other. 

 If all of our programs featured only sequential control flow they would be limited in their 
power. To write more complex and powerful programs we need to make use of 
programming constructs that alter this normal control flow.  

 

If Statement 

 One type of programming construct is the conditional statement. The control flow of a 
conditional statement is illustrated below.  

 

 

 

 

 

 In this example there are two possible paths through the program, involving execution of 
different statements. Which path is taken depends on the result of applying a test 
condition.  

 Enter these statements and save them as a script m-file: 

 
  a = input('Enter a number:'); 
 if (a >= 0) 
     root = sqrt(a); 
    disp(['Square root = ' num2str(root)]); 
 else 
    disp(['Number is negative and there is no square root']); 
 end 
 

 Pay particular attention to the alternative paths of execution that the program can take 
depending on the result of the comparison (a >= 0). This comparison corresponds to the 
condition box in above figure.  

 The two statements after the if will be executed only if the condition is true. The 
statement after the else will be executed if the condition is false. After one of these two 
paths has been taken control will resume immediately after the end statement.  

 Note that the if and end statements are both compulsory and should always come in pairs.  

 The else statement is optional and if omitted the program execution path will jump to 
after the end statement if the condition is false. 

 A list of common comparison (or relational) operators:  

  Equal to:    == 
  Not equal to:   ~=  



 18 

Greater than:    > 
Less than:    < 
Greater than or equal to:   >=  
Less than or equal to:   <=  

 There are also the common logical operators for combining the results of different 
comparisons.  

 ~   NOT  
  &&   AND (scalar short-circuit operation)  

 &   AND (scalar/array operation)  
  ||   OR (scalar short-circuit operation)  
  |   OR (scalar/array operation)  

 Most of these operators are fairly intuitive. However, note the distinction between & and 
&& (and likewise between | and ||). The & and | operators perform AND and OR 
operations respectively. They will evaluate the expressions on both sides of the operator 
and return a true or false value depending on whether both (&) or either (|) of them 
evaluated to true. 

 These operators will work with either scalar (i.e. single value) logical expressions or array 
expressions (i.e. that evaluate to an array of true/false values). The only restriction is that 
Octave must be able to match the expressions on either side of the operator. Either both 
should be scalars, both should be arrays of the same size, or one should be an array and 
the other a scalar (More on arrays later). 

 The && and || operators perform the same AND and OR operations, but using what is 
known as a short-circuiting behavior. This means that, if the result of the overall AND/OR 
operation can be determined from the left-hand expression alone, then the right-hand 
expression will not be evaluated. For example, if the left-hand expression of an AND 
operation is false then the result of the AND will also be false, regardless of the value of 
the right-hand expression. Therefore, the advantage of short-circuiting is that unnecessary 
operations are not performed. However, note that && and || can only be used with scalar 
values, not arrays. 

 There are three different operators in the following condition: ==, && and >. In what order 
would MATLAB evaluate them? An expression containing multiple operators is evaluated 
using the rules for operator precedence.  
 

 ... 
 if gender == 'm' && calories > 10+2*75 
 ... 

 Read about operator precedence using help and doc commands.  

 Brackets have the highest precedence. It is a good idea to include them to make our code 
easier to understand and less prone to errors.  

 Sometimes we may have many if statements which all use conditions based on the same 
variable. It is not incorrect to use if statements in such cases, but it can lead to a large 
number of consecutive if statements in our code, making it harder to read and more prone 
to errors. In this case, it is preferable to use a switch statement.  

 The switch statement offers an easy way of writing code where the same variable needs 
to be checked against a number of different values.  



 19 

 
 switch day 
        case 1 
           day_name = 'Monday'; 
        case 2 
           day_name = 'Tuesday'; 
        case 3 
           day_name = 'Wednesday'; 
        case 4 
           day_name = 'Thursday'; 
        case 5 
           day_name = 'Friday'; 
        case 6 
           day_name = 'Saturday'; 
        case 7  
           day_name = 'Sunday'; 
        otherwise 
           day_name = 'Unknown'; 
 end 

 Note that the switch statement is used only for equality tests – we cannot use it for other 
types of comparison (e.g. >, <, etc.).  

 In the above example the switch expression was compared to a single value in each case. It 
is possible to compare the expression to multiple values by enclosing them within curly 
brackets and separating them by commas. The corresponding statements are executed if 
any of the values are matched. This is equivalent to an if statement with multiple equality 
tests combined using a || operator. 
 

 switch day 
       case {1,2,3,4,5} 
          day_name = 'Weekday'; 
       case {6,7} 
          day_name = 'Weekend'; 
       otherwise 
          day_name = 'Unknown'; 
 end 

 

Using If Statements Effectively 

 First, we will implement the switch command using if-else statements only.  

 We will provide multiple solutions for this problem, discussing the efficiency of each one.  

 Solution a: 

 
 a = input('Enter a number for day:');  
 strA = num2str(a); 
 if (a == 1) disp(['Day  ' strA ' is weekday']); end 
 if (a == 2) disp(['Day  ' strA ' is weekday']); end 
 if (a == 3) disp(['Day  ' strA ' is weekday']); end 
 if (a == 4) disp(['Day  ' strA ' is weekday']); end 
 if (a == 5) disp(['Day  ' strA ' is weekday']); end 
 
 if (a == 6) disp(['Day  ' strA ' is weekend']); end  
 if (a == 7) disp(['Day  ' strA ' is weekend']); end 
 



 20 

 Although this program works correctly for proper values, it does not provide an error 
message if the user enters a number like -1 or 9. The following solution fixes this problem. 
Note that we cannot say 'Unknown day' using only a simple comparison.  

 Solution b: Solving the "unknown" problem 

 
 a = input('Enter a number for day:');  
 strA = num2str(a); 
 
 sB = ['Day  ' strA ' is unknown‘]; 
 
 if (a == 1) sB = (['Day  ' strA ' is weekday']); end 
 if (a == 2) sB = (['Day  ' strA ' is weekday']); end 
 if (a == 3) sB = (['Day  ' strA ' is weekday']); end 
 if (a == 4) sB = (['Day  ' strA ' is weekday']); end 
 if (a == 5) sB = (['Day  ' strA ' is weekday']); end 
 
 if (a == 6) sB = (['Day  ' strA ' is weekend']); end  
 if (a == 7) sB = (['Day  ' strA ' is weekend']); end 
 
 sB  
 

 This program has a different logic from the previous one. It does not display a message 
immediately after making comparisons. Instead, it prepares a message whis says the “Day 
is unknown”. If the users enters a valid value, this message is updated. Otherwise, the 
“Day is unknown” message stays as it is. At the end of the program sB is displayed, either 
with its original or updated content, depending on the value that the user has entered. 

 The following solutions uses if statements with multiple equality tests combined using 
logical OR (||) and logical AND (&&) operators.  

 Solution c: 

 
 a = input('Enter a number for day:');  
 strA = num2str(a); 
 
 if (a == 1 || a == 2 || a == 3 || a == 4 || a == 5) 
     disp(['Day  ' strA ' is weekday']);  
 end 
 
 if (a == 6 || a == 7) 
     disp(['Day  ' strA ' is weekend']); 
 end  
 
 if (a ~= 1 && a ~= 2 && a ~= 3 && a ~= 4 &&  
     a ~= 5 && a ~= 6 && a ~= 7) 
     disp(['Day  ' strA ' is unknown']); 
 end 
 

 This solution is better since it reduces the number of if statements down to three. 
However the condition of the last if statement is unnecessarily cumbersome. A much 
better alternative exists, as seen in the following solution. 

 



 21 

 Solution d: 

 
 a = input('Enter a number for day:');  
 strA = num2str(a); 
 
 if (a == 1 || a == 2 || a == 3 || a == 4 || a == 5) 
     disp(['Day  ' strA ' is weekday']);  
 else 
    if (a == 6 || a == 7) 
        disp(['Day  ' strA ' is weekend']); 
    else 
        disp(['Day  ' strA ' is unknown']); 
    end 
 end 
 

 
 This solution offers the following improvements over the previos ones. 
 Faster execution with less number of comparisons executed, since number of if 

stetments are reduced from 7 to 3. 
 The long logical condition for the"unknown day " is no longer necessary and therefore 

eliminated. Below, we draw the flowchart for this solution to see how elimination 
become possible.  
 



 22 

 
 

 Now we introduce the recommended solution. 
 This solution uses the so-called elseif statement (not else if ). 
 The elseif statement is easy to understand and is more similar to switch statement. 

However, note that, 
 The alternative cases can have complex conditions and each if does not have to have its 

own end statement. In other words, an elseif statement has a single else and a single 
end part. 

 The last (and only) else corresponds to otherwise in the switch statement. 

 

 Solution e: The recommended solution 

 
 a = input('Enter a number for day:');  
 strA = num2str(a); 
 
 if (a == 1 || a == 2 || a == 3 || a == 4 || a == 5) 
     disp(['Day  ' strA ' is weekday']);  
 elseif (a == 6 || a == 7) 
     disp(['Day  ' strA ' is weekend']); 

WEEKDAY WEEKEND 
UNKNOWN 

 

a == 1 || 

a == 2 || 

a == 3 || 

a == 4 || 

a == 5 

True 

False 

Here we know that the condition is FALSE  

İe:  ~(a==1||a==2||a==3||a==4||a==5) is TRUE  

So:   (a~=1 &&a ~= 2&&a ~= 3&& ~= 4&&a ~= 5)  

 
a == 6 || 

a == 7 

True 

False 

Now we know   

( a~=1  && a ~= 2 && 

  a ~= 3 && a~= 4 && 

  a ~= 5 ) 

AND 

( a~=6  && a ~=7 ) 

 



 23 

 else 
     disp(['Day  ' strA ' is unknown']); 
 end 
  

 
 You should be careful when writing conditions for the if-statements. You may find yourself 

writing conditions impossible to satisfy, i.e., conditions that never can be true. The 
following exercise illustrates this point. 

 Assume that you write a program where user enters two numbers and program selects the 
greatest one. This is a fairly easy program and can be coded as follows:  

 
 
 n1 = input('Enter the first  number:');  
 n2 = input('Enter the second number:');  
 
 if (n1 == n2) 
     disp('Numbers are equal'); 
 end 
 
 if (n1 > n2) 
     disp('The first number is greater than the second number'); 
 end 
 
 if (n1 < n2) 
     disp('The first number is less than the second number'); 
 end 
  

 The logic is easy to explain: There are only 3 possible cases for 2 numbers: Numbers can be 
equal to each other, or the first number can be greater than the second number or the 
first number can be less than the first number. Furthermore, these cases are mutually 
exclusive, meaning that only one of them can be true for a given pair of numbers. 

 In the program, each case is handled by a seperate if statement.  

 Now, repeat the exercise for 3 numbers. How many possible cases are there? For 4 
numbers? For 5 numbers? 

 The most important question is this: When writing the program, should you simply 
enumerate all possible cases first and then write an if statetement for each one? 

 The short answer is no. Such a blind approach can easily lead to a situation where a lot of 
unnecessarily written if statements sitting there doing nothing but cluttering your code 
and slowing down your program.  

 Consider the case of three numbers. Without too much thinking, we can use a simple logic: 
Since any two number can be related in 3 possible ways (>, ==,<), 3 numbers can be 
related in 33=27 possible ways. This logic can be drawn partially as follows: 



 24 

 

 We have drawn only 1/3 of the possible cases, which is sufficient to show that the above 
logic is simply wrong! Let’s write the code for the first two branches in the above diagram: 

 A = input('Enter the first  number:');  
 B = input('Enter the second number:');  
 C = input('Enter the third  number:');  
 
 if (A == B && B == C && A == C)  
     disp('Numbers are equal to each other');  
 end 
 
 if (A == B && B == C && A > C)  
     disp(???) ; 
 end  

 The second if can never evaluate to true. Why? Consider the case where A is equal to B. 
Then, if B is equal to C, A and C must be equal to each other (because A and C both are 
equal to the same number B).  It is clear that, in that case (A > C) can never be true. Since 
all conditions are tied together with logical AND operator, three numbers that can make 
the whole expression true simply do not exist.  

A > C 

A == C 

A < C 

A > C 

A == C 

A < C 

A > C 

A == C 

A < C 

B > C 

B == C 

B < C 

A == B 

A < B 

A > B 

 

There are 3 x 3 x 3=27  possible cases for 3 numbers. 
There are 3^6=729       possible cases for 4 numbers. 
There are 3^10=59049 possible cases for 5 numbers. 



 25 

 Here, an impossible case is coded. The programmer has written unnecessary code, the 
computer check this statement every time it runs and program becomes larger. Avoid 
these kind of mistakes in your programs and by learning that simply handling 
combinatorial cases one by one does not necessarily yield logically correct results. 

 Think well before writing if-else conditions.  

 You may be writing impossible to satisfy conditions. 

 You may be missing some critically important conditions.  

 You may be writing contradictory conditions in different places in code.  

 Do the following self-study excersies to test your understanding of the subject: 

 Exercise 1: User enters 3 numbers from keyboard. Sort these numbers in descending 
order and solve the "find the greates number" problem after the sort operation.  

 Exercise 2: Write a program that displays the smallest of five input values that may 
include duplicate values (e.g., 6, 4, 8, 6, 7). 

 Exercise 3: Write a program that inputs a number between 1 and 10 and displays the 
number with the appropriate two-letter ending (e.g., 1st, 2nd, 3rd, 4th, 5th…). 

 Exercise 4: Write a program that will receive three test scores as input. The program 
should determine and display their average and the appropriate letter grade based on 
the average. The letter grade should be determined using a standard 10-point scale (A 
90–100; B  80–89.999; C  70–79.999, F 70–69.999) 



 26 

 Excersises with solutions: 

 Question 1 

The ticket price for a concert varies according to the age of the customer.  

 When the person is under 16, the charge is 70 TRY;  

 When the person is 65 or over, the charge is 50 TRY;  

 All others are charged 100 TRY. 

Given the age of the customer, calculate the ticket price. 

a) Draw the flowchart of the solution. 
b) Write the Octave code. 

 Solution 1 

First, try to visualize how your program will work.  

It should work as follows if the age of the customer is 15: 

 Enter the age of the customer: 15 
 The ticket price for this customer is 70 TRY 

It should work as follows if the age of the customer is 67: 

 Enter the age of the customer: 67 
 The ticket price for this customer is 50 TRY 

It should work as follows if the age of the customer is 42: 

 Enter the age of the customer: 42 
 The ticket price for this customer is 100 TRY 

 
It is clear that the program should read the age of the customer from the keyboard and display 
the proper ticket price. Consequently, the program has one input (the age of the customer) 
and one output (the ticket price). 

 To read the input, you use the input command in Octave. 

 To display the output, you use the disp command in Octave. 
 
In order to decide what the ticket price should be, we must consider three cases. These cases 
are already given in the problem definition, as seen in the following figure.  
 
 
  
 
 
The simplest solution is to write three if statements, one for each case. The flowchart is shown 
below: 
 

0 
Age 

16 65 

70 TRY 100 TRY 50 TRY 



 27 

 

The Octave code for this flowchart is: 

 age = input('Enter the age of the customer:');  
 
 if (age < 16)  
     disp('Ticket price for this customer is 70 TRY');  
 end 
 
 if (age > 65)  
     disp('Ticket price for this customer is 50 TRY');  
 end 
 
 if (age >= 16 && age <= 65)  
     disp('Ticket price for this customer is 100TRY');  
 end 

As discussed previously, this is not the recommended solution. Also, suppose that the user 
enters -5 as the age, or 5000? What should the program do? The following code is a better 
solution. It only fails when a person older than 130 shows up. 

 age = input('Enter the age of the customer:');  
 
 if     (age < 16 && age >= 0)  
        disp('Ticket price for this customer is 70 TRY');  
 elseif (age > 65 && age < 130)  
        disp('Ticket price for this customer is 50 TRY');  
 elseif (age >= 16 && age <= 65)  
        disp('Ticket price for this customer is 100 TRY'); 
 else 
        disp('Invalid age information is entered');  
 end 

 

Enter the age of the customer: 

Age > 65 Ticket price is 70 TRY 
True 

False 

Age < 16 Ticket price is 50 TRY 
True 

False 

age>=16 
&& 

age<=65 

Ticket price is 100 TRY 

True 

False 

end 



 28 

Note that, the flowchart for this solution will be different from the one above. Examine the 
following flowchart and be sure that you understand how the redundant execution of if 
statements are eliminated. 

 

 
 

Here, the program receives an input value and decides into which predefined interval (0−16, 
16−65, 65−130) this value falls into, before taking the necessary action. This mechanism can 
be used for creating many, seemingly different problems. Do not be fooled by the story 
presented in the problem. In fact, all these problems are the same.  Two of such seemingly 
different but essentially the same questions are presented in questions 2 and 3. 
 

 Question 2 

A company calculates the commission rate for a salesperson, given the amount of sales.  

 When the amount of sales is less than or equal to 2,000 TRY, the commission is 2%.  

 When the amount of sales is more than 2,000 TRY and less than or equal to 4,000 TRY, 
the commission is 4%.  

 When the amount of sales is more than 4,000 TRY and less than or equal to 6,000 TRY, 
the commission is 7%. 

 When the amount of sales is more than 6,000 TRY, the commission is 10%. 
 

Given the amount of sales, calculate the commission. 
 

a. Draw the flowchart of the solution. 
b. Write the Octave code. 

Enter the age of the customer: 

Ticket price 
is 70 TRY 

False 

Ticket price 
is 50 TRY 

True 

age>=16  
&&  

age<=65 

Ticket price 
is 100 TRY 

True 
False 

end 

age>=0  
&&  

age<16 

Age>65 
 && 

age<130 

True False 

Invalid age! 



 29 

 Solution 2 
 
Draw the flowchart and see that how it is similar to the flowchart of the previous problem: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
And the Octave code is: 

 S = input('Enter the sales amount:');  
 
 if     (S >= 0 && S <= 2000)  
         disp(['Comission is ' num2str(S*0.02)]);  
 elseif (S > 2000 && S <= 4000)  
         disp(['Comission is ' num2str(S*0.04)]);  
 elseif (S > 4000 && S <= 6000)  
         disp(['Comission is ' num2str(S*0.07)]);  
 elseif (S > 6000) 
         disp(['Comission is ' num2str(S*0.10)]);  
 else 
         disp('Invalid sales amount is entered');  
 end 

 
 
 
 

Enter the sales amount S: 

Commission  
= S * 0.02 

False 

Commission  
= S * 0.04 

True 

S>4000  
&&  

S<=6000 

 

Commission  
= S * 0.07 

True 
False 

end 

S>=0  
&& 

 S<=2000 

S>2000  
&&  

S<=4000 

 

True False 

Commission  
= S * 0.10 

Invalid sales 
amount 

S > 6000 

False 

True 



 30 

 Question 3 

An admission charge for a music concert varies according to the age of the person. Develop a 
solution to print the ticket charge given the age of the person. The charges are as follows: 

 Over 55:  10.00 TRY 

 21–54:  20.00 TRY 

 13–20:  15.00 TRY 

 3–12:     5.00 TRY 

 Under 3:  Free 
 

a) Draw the flowchart of the solution (10 points). 
b) Write the Octave code. 

 Solution 3 

The Octave code is provided below. Draw the flowchart yourself. 

 age = input('Enter the age of the customer:');  
 
 if     (age >= 0 && age < 3)  
         disp('Ticket for this customer is free');  
 elseif (age >= 3 && age < 13)  
         disp('Ticket price for this customer is 5 TRY');  
 elseif (age >= 13 && age < 21)  
         disp('Ticket price for this customer is 15 TRY'); 
 elseif (age >= 21 && age < 55)  
         disp('Ticket price for this customer is 20 TRY'); 
 elseif (age >= 55 && age < 130)  
         disp('Ticket price for this customer is 10 TRY'); 
 else 
         disp('Invalid age information is entered');  
 end 

 

 Question 4 

The figure below shows how blood pressure can be classified based on the diastolic and 
systolic pressures. Write a MATLAB script m-file to display a message indicating the 
classification based on the values of two variables representing the diastolic and systolic 
pressures. The two blood pressure values should be read in from the keyboard.  
 

 

 

 

 

 

 

 

 

 

 

 

 



 31 

 Solution 4 
 
This problem differs from those above in two respects: 

 It receives two inputs (diastolic pressure and systolic pressure). 

 The decision intervals are more complicated to express programmatically. 
 

 
For example consider the High region. 

 When systolic pressure is between 140 and 190 we don’t need to consider the value of 
the Diastolic pressure. This is the region A in the graph.  

 In region B, the blood pressure is also high.  

So, we need to expess these two regions separately and tied them together using a logical OR 
operator (i.e., if values are in ((region A) || (region B)), then the blood pressure is high). 

Following the same logic for the other regions as well, the Octave code can be written as 
follows. 

 
 s = input('Enter the systolic pressure:');  
 d = input('Enter the diastolic pressure:');  
 
 if ( (s > 140 && s <= 190)  ||                         %this is region A 
      (d > 90  && d <= 100)     )                       %this is region B        
      disp('The blood pressure is HIGH'); 
 end 
 
 if ( (s > 120 && s <= 140 && d > 40 && d <= 90)  ||     
      (s >  70 && s <= 120 && d > 80 && d <= 90)     )          
      disp('The blood pressure is PRE-HIGH'); 
 end 
 
 if ( (s > 90 && s <= 120 && d > 40 && d <= 80)  ||    %this is region C 
      (s > 70 && s <   90 && d > 60 && d <= 80)     )  %this is region D        
      disp('The blood pressure is IDEAL'); 
 end 
 
 if (s >= 70 && s <= 90 && d >= 40 && d <= 60)   
     disp('The blood pressure is LOW'); 
 end 

 

 

A 

B 

C 

D 



 32 

 Question 5 

A company has two types of workers:  Workers who get paid according to the number of 
hours they work each week (H-type) and workers that work for a predefined salary (S-type). 

 Weekly pay for S-type workers is 750 TRY if they work 40 or more hours within the 
week. If they work less than 40 hours they still get 750 TRY. However, if they work less 
than 30 hours they will get 700 TRY.  

 H-type workers are paid 12 TRY per hour up to 40 hours. For more than 40 hours, they 
are paid 18 TRY for each extra hour.  

Write a solution to compute the weekly pay for a given worker. The data is entered from the 
keyboard in the following format: 

Name of the Worker   Type of the Worker    Hours Worked: 
---------------------------    --------------------------   -------------------- 
Ahmet Genç                     H                                  35 
Mehmet Bal                      S                                  42  
 
a) Draw the flowchart of the solution. 
b) Write the Octave code. 

 

 Solution 5 

 

 
 
The flowchart is given above and Octave code can be written as follows: 

Invalid 
Worker Type! 

Enter the Name of the worker N: 
Enter the type of the worker T: 
Enter the number of hours worked W: 

Pay  
750 TRY 

False 

True 

Pay  
W*12 TRY 

True 

end 

T==’S’ 

True 

False 

W>=30 

True 

False 

T==’H’ 

W>40 

False 

Pay  
700 TRY 

Pay  
12*40+(W-40)*18 

TRY 



 33 

 
 N = input('Enter the Name of the worker: ', 's');  
 T = input('Enter the type of the worker: ', 's');  
 W = input('Enter the number of hours worked: '); 
 
 if (T=='S' && W >= 30)         
     disp(['Pay ' N ' 750 TRY']); 
 end 
 
 if (T=='S' && W < 30)         
     disp(['Pay ' N ' 700 TRY']); 
 end 
 
 if (T=='H' && W <= 40)         
     disp(['Pay ' N ' ' num2str(W*12) ' TRY']); 
 end 
 
 if (T=='H' && W > 40)         
     disp(['Pay ' N ' ' num2str(40*12+(W-40)*18) ' TRY']); 
 end 
 
 if (T~='H' && T~='S')         
     disp('Invalid worker type!'); 
 end 
 

 

 Question 6 

A hotel has a pricing policy as follows:  

 The cost of a room is 100 TRY.  

 If the customer is staying on company business, there is a 20% discount.  

 If the customer is over 60 years of age, there is a 15% discount.  

 If eligible, a customer does not receive both discounts, only the larger one.  
 

Given the above rules, print the cost of the room. 
 

a) Draw the flowchart of the solution. 
b) Write the Octave code. 

 

 Solution 6 
 
In this problem, the order of logical tests is important. The rules say that there are two types 
of discount in this hotel, one for people who are on business trip (20%), and the other for 
people older than 60 (15%). The last rule states that anyone who is both older than 60 and on 
a business trip does not receive both discounts, only the larger one (that is 20%). 

In other words, for people on business trip, the age is not important: they always receive the 
20% discount, and nothing else. You should check the age only when the 20% discount is not 
possible. 

So, the proper flowchart should be drawn as follows: 

 



 34 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The Octave code is: 
 
 
 age = input('Enter the age of the customer:');  
 onB = input('Enter YES if the customer is on business trip:', 's'); 
 
 if     (onB == 'YES')  
        disp('Customer should pay 80 TRY');  
 elseif (age > 60)  
        disp('Customer should pay 85 TRY');  
 else 
        disp('Customer should pay 100 TRY');  
 end 

 

 

 Question 7 

Ayşe needs to buy a present for her best friend.  

 She can buy it online or she can travel by car to buy at the store.  

 The online cost of the item may be different from the cost at the store.  

 Ayşe’s car uses 0.25 TRY worth of gas per Km. 

 She is not sure which would be less expensive considering shipping & handling costs to 
buy online and gas costs to travel to the store.  

 Write a solution to tell Ayşe which would be the best way to buy the present. 
 

a) Draw the flowchart of the solution. 
b) Write the Octave code. 

 
 

Pay  
100 TRY 

 

Enter the Age of the worker age: 
Enter Yes if the customer is on a business trip onB: 

Pay  
80 TRY 

False 

True 

end 

onB==’Yes
’ 

True 

False 

Age>60 

Pay  
85 TRY 



 35 

 Solution 7 
 
This problem is extremely simple. Consider the following two examples: 

a) You will buy a smart phone. The phone is sold at 1000 TRY at a store 4 Km away. The 
same phone is also sold at an on-line store for 900 TRY with 10 TRY for cargo expenses. 
Then, the cost of buying the phone at the store is (1000+4*0.25=1001 TRY). Compare 
this cost to the cost of buying the phone on-line which is (900+10=910 TRY). In this 
case, It is clear that you should buy it on-line. 

b) You will buy a roller pen. The pen is sold at 10 TRY at a store 2 Km away. The same pen 
is also sold at an on-line store for 9 TRY with 5 TRY for cargo expenses. Then, the cost 
of buying the pen at the store is (10+2*0.25=10,50 TRY). Compare this cost to the cost 
of buying the phone on-line which is (9+5=14 TRY). In this case, it is clear that you 
should buy it at the store. 

Examples show that to make the decision, the program needs for values as input: 

1. The cost of the item at the store 
2. The distance to the store in Km 
3. The cost of the item on-line 
4. The shipping and handling cost (i.e., cargo expenses) 

The flowchart: 

 
 
 
 
 
 
 

Same cost! 

 Enter the price at store storePrice: 
 Enter the distance to store in Km distance: 
 Enter the on-line price onlinePrice: 
 Enter the shipping & handling cost cargo: 
 

Buy online 

False 

True 

end 

diff > 0 

True 

False 

diff < 0 

Buy at store 

 diff = (storePrice + distance * 0.25) - (onlinePrice + cargo) 



 36 

The code: 

  
 storePrice  = input('Enter the price at store: ');  
 distance    = input('Enter the distance to store in Km: '); 
 onlinePrice = input('Enter the on-line price: ');  
 cargo       = input('Enter the shipping & handling cost: '); 
 
 diff = (storePrice + distance * 0.25) - (onlinePrice + cargo) ; 
 
 if     (diff > 0)  
        disp('Buy online');  
 elseif (diff < 0)  
        disp('Buy at the store');  
 else 
        disp('No difference, buy wherever you want!');  
 end 

 

 


