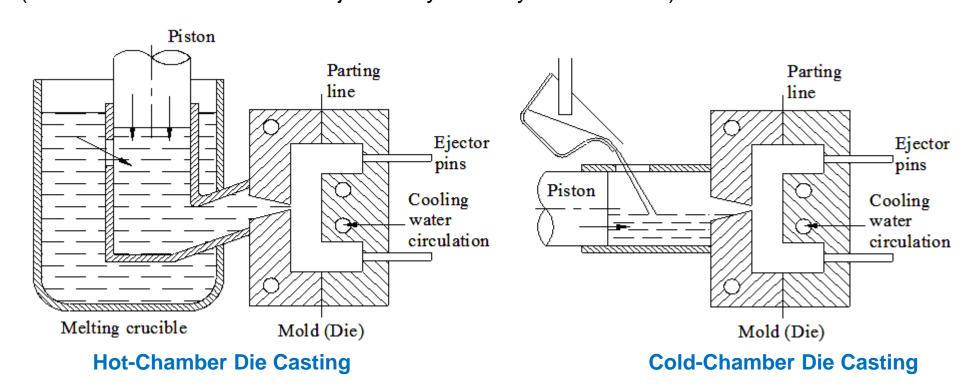


ME 333 Manufacturing Processes II

Prof. Dr. Ömer EYERCİOĞLU & Prof. Dr. Ali Tolga BOZDANA Mechanical Engineering Department

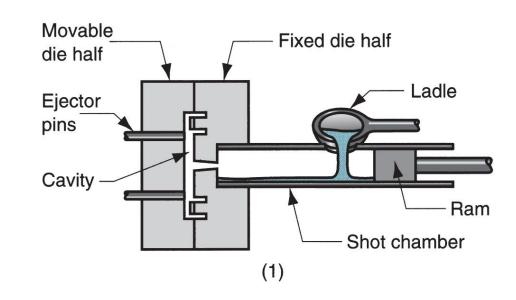
- ➤ The process used for making a casting depends upon the quantity to be produced, the metal to be cast, and the complexity of part.
- ➤ Sand molds are single-purpose molds, and are completely destroyed after the metal has solidified. Obviously, use of a permanent mold provides considerable saving in labor cost.
- > Permanent molds must be made of metals capable of withstanding high temperatures.
- ➤ Due to high cost, they are recommended only when many castings are to be produced.
- ➤ Although permanent molds are impractical for large castings and alloys of high melting temperatures, they can be used advantageously for small and medium-sized castings that are manufactured in large quantities.
- ➤ A summary of various special casting methods to be discussed in this chapter is as follows:
 - Die Casting
 - Centrifugal & Semi-Centrifugal Casting
 - Investment (Precision or Lost-Wax) Casting
 - Continuous Casting
 - Shell Molding

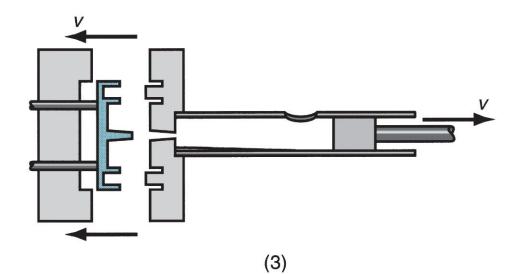
- ➤ In this process, molten metal is forced by pressure into a metal mold (known as die).
- ➤ The usual pressure is from 100 to 125 atm.
- ➤ It is the most widely used method of permanent mold processes.
- ➤ There are two methods employed:
 - 1. Cold-chamber die casting
 - 2. Hot-chamber die casting

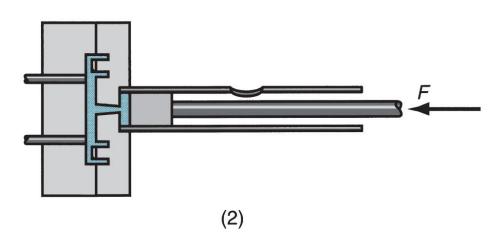


Die Casting Methods

- Cold-chamber die casting: Material to be cast is molten outside the machine. Used for metals of high melting temp. (above 550 °C) such as brass, aluminum, and magnesium.
- Hot-chamber die casting: Materials to be cast is molten inside the machine. Used for metals of low melting temp. (below 550 °C) such as zinc, tin, and lead.
- ➤ The main distinction is determined by **the location of melting pot**. In hot-chamber, the pot is included in the machine whereas the pot is separate from the machine in cold-chamber (i.e. metal is introduced into injection cylinder by other means).

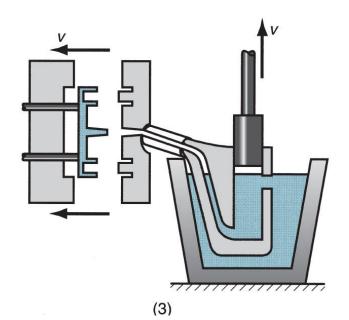


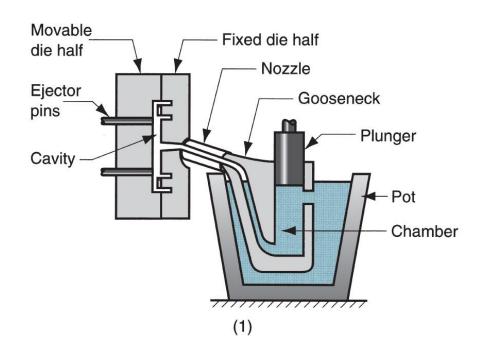

Cold-Chamber Die Casting

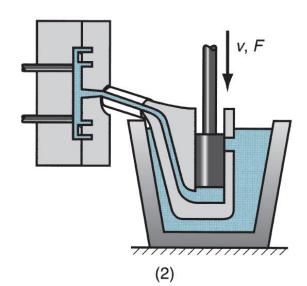


Cycle in cold-chamber die casting:

- **1.** With die closed and ram withdrawn, molten metal is poured into the chamber.
- **2.** Ram forces the metal to flow into die, maintaining pressure during cooling and solidification.
- **3.** Ram is withdrawn, die is opened, and the part is ejected.




Hot-Chamber Die Casting



Cycle in hot-chamber die casting:

- **1.** With die closed and plunger withdrawn, molten metal flows into the chamber.
- **2.** Plunger forces the metal to flow into die, maintaining pressure during cooling and solidification.
- **3.** Plunger is withdrawn, die is opened, and the part is ejected.

Features of Die Casting

Advantages:

- © Rapid process (since both dies and cores are permanent)
- Good surface quality (smooth surface improves appearance and reduces work required for other operations)
- © Good dimensional tolerances as compared to sand casting (the size is so accurately controlled that little or no machining is necessary)
- © Low scrap loss (since sprue, runners, and gates can be remelted)

Disadvantages:

Shape restriction (part geometry must allow for removal from die cavity)

Production quantities and materials in die casting:

- ➤ The optimum production quantity ranges from 1,000 to 200,000 pieces.
- ➤ Maximum weight of die castings are about 2 kg for brass and over 50 kg for aluminum.
- ➤ Small to medium size castings can be made at cycle rates of 100 to 800 die fillings per hour.
- ➤ **Die life** depends on metal cast, ranging from 10,000 fillings (brass) to several million (zinc).
- ➤ single-cavity die (big & complex parts) or multiple-cavity die (small parts in large quantity).

Die Casting Alloys

- ➤ Wide range of nonferrous alloys can be die-cast.
- ➤ The principal base metals are: zinc, aluminum, magnesium, copper, lead, tin
- ➤ They are classified in two groups:
 - 1. Low-temperature alloys (casting temp. below 550 °C)
 - 2. High-temperature alloys (casting temp. above 550 °C)

Zinc-Base Alloys

- ➤ Over 75% of die castings are produced from zinc-base alloys.
- ➤ Melting point is **around 400 °C**, thus they are cast by hot-chamber die casting.
- ➤ <u>Alloying elements:</u> **Aluminum** improves mechanical properties; **copper** improves tensile strength and ductility; **magnesium** makes casting stable in microstructure.
- ➤ Zinc-base alloys are widely used in: automotive industry, washing machines, refrigerators, business machines, etc.

ASTM No. AI		Cu	Mg	Zn	
AG40A(XXIII)	4.1	0.1 (max)	0.04	Remainder	
AC41A(XXV)	4.1	1.0	0.04	Remainder	

Die Casting Alloys

Aluminum-Base Alloys

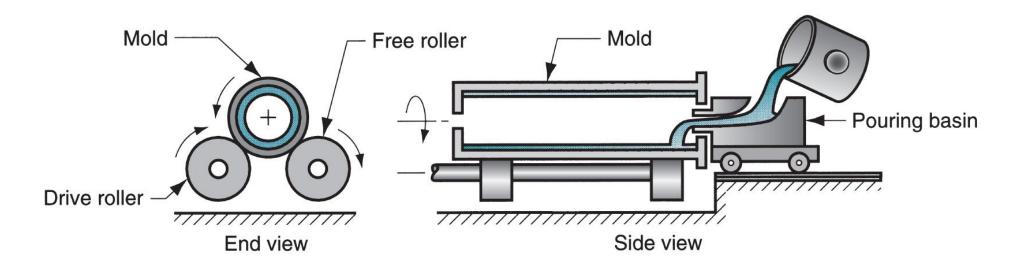
- ➤ They are preferred due to their lightness in mass and resistance to corrosion.
- ➤ Compared to zinc alloys, they are more difficult to cast (melting point of around 550 °C).
- ➤ Molten aluminum will attack steel if kept in continuous contact, so **cold-chamber process** generally is used.
- ➤ <u>Alloying elements:</u> **Silicon** increases hardness and corrosion resistance; **copper** increases mechanical properties; **magnesium** increases lightness and resistance to impact.
- ➤ They are generally used in: aerospace industry and production of pistons.

ASTM No.	Cu	Si	Mg	Al	Uses
S12A&B	1	12	-	Rem.	Large intricate castings
S5C	-	5	-	Rem.	General purpose
G8A	3	-	8	Rem.	High strength, corrosion resistance
SG100A&B	-	9.5	0.5	Rem.	General purpose, excellent casting characteristics
SC84B	3.5	9	-	Rem.	Good machinability and castability

Copper-Base Alloys

- ➤ Die casting of **brass** and **bronze** present greater problems due to their high casting temp. (around 870 to 1040 °C), which needs heat-resisting die material.
- ➤ Copper alloys are **cold chamber die-cast**.
- ➤ They have extensive use in: miscellaneous hardware, electric-machinery parts, small gears, marine, automotive and aircraft fittings, chemical apparatus, and other small parts.

ASTM No.	Cu	Si	Sn	Pb	Zn	Uses	
Z30A	57 (min)	ı	1.5	1.5	30 (min)	Yellow brass, good machinability	
Z5331A	65	1	-	•	Rem.	General purpose, corrosion res., good castability	
Z5144A	81	4	-	-	Rem.	High strength, hardness, wear res., difficult to mold	

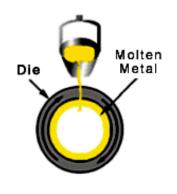

Magnesium-Base Alloys

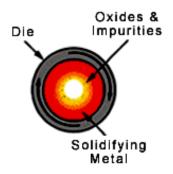
- ➤ Mainly alloyed with aluminum, containing small amounts of other elements.
- ➤ They have the lowest density.
- ➤ Cold-chamber die casting is suitable (casting temp. is around 670-700 °C).

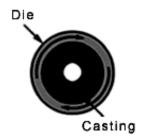
ASTM No.	AI	Zn	Mn	Si	Cu	Ni	Mg
B94	9	0.5	0.13	0.5	0.3	0.03	Rem.

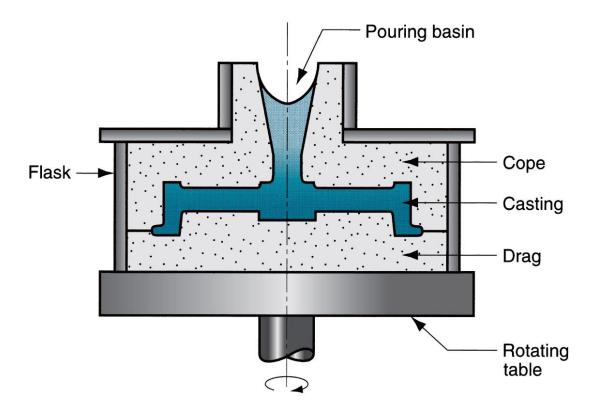
Centrifugal Casting

- ➤ It is a process of **rotating the mold** while the metal solidifies so as **to utilize centrifugal force** to position the metal in the mold.
- ➤ Castings of symmetrical shapes are naturally suitable for this method, although many other types of castings can be produced.
- ➤ It is often more economical than other methods. Cores in cylindrical shapes and risers or feed-heads are eliminated. The castings have a dense metal structure with all impurities forced back to the centre where frequently they can be machined out.


Centrifugal Casting




- ➤ Piston rings (50-100 grams) to paper mill rolls (over 42 tons) have been cast in this manner. Aluminum engine block uses centrifugally cast iron liners.
- ➤ In casting of some alloys, the heavier elements tend to be separated from the base metal, which is known as **gravity segregation**. The metal is forced against walls on the mold with a centrifugal force of approximately 70 g, which is 70 times greater force than the force of gravity alone on the casting. Forces as high as 150 g have also been used, but they are unnecessary unless very thick-walled cylinders are being cast.



Semi-Centrifugal Casting

- ➤ In this method, centrifugal force is used to produce solid castings rather than tubular parts.
- ➤ Density of metal in the final casting is greater in the outer sections than at the center of rotation.
- ➤ The process is used on parts in which center of the casting is machined away (such as wheels and pulleys).

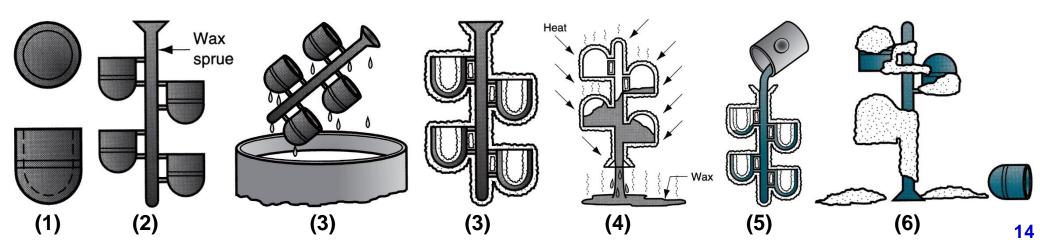
Investment Casting

- ➤ Very smooth, highly accurate castings can be made from ferrous and nonferrous alloys.
- ➤ Useful in casting of unmachinable alloys and radioactive metals.
- ➤ There are a number of processes employed, but all of them incorporate sand, ceramic, plaster (alçı), or plastic shell made from an accurate pattern into which metal is poured.
- ➤ Patterns are produced from wax (mum) or plastics which are subsequently melted from mold, leaving a cavity having all the details of the original pattern.

Advantages:

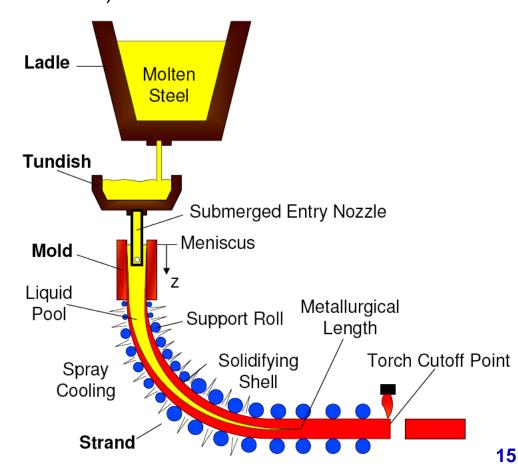
- intricate forms with undercuts can be cast
- © very smooth surface with no parting line
- © dimensional accuracy is good
- © unmachinable parts can be cast
- may replace die casting for short runs

Disadvantages:

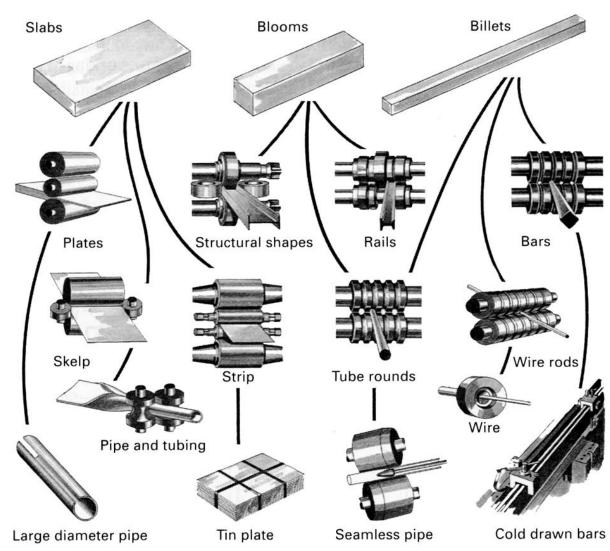

- expensive
- not suitable for big parts

Investment Casting

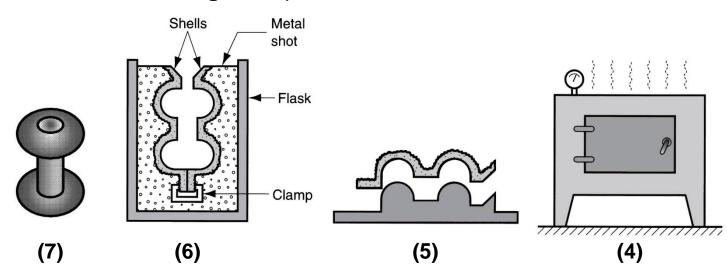
- 1. First step requires the exact replica of the part to be cast (made from steel or brass). From this replica, a split mold (bismuth or lead-alloy) is made. After wax is poured into the mold and solidification takes place, the mold is opened and the wax pattern is removed.
- 2. Several patterns are assembled together (wax tree) with necessary gates and risers by heating the contact surfaces (wax welding) with a hot wire.
- 3. This cluster is molded (coated) by silica sand, plaster or ceramic slurries.
- **4.** After the mold material gets sufficient strength, the mold is **placed upside down and heated** in an oven for several hours to melt out the wax and to dry the mold.
- 5. Casting can be produced by gravity (as in figure), vacuum, pressure or centrifugal force.
- 6. When the solidification finished, the mold is broken away and gates with risers are cut-off.

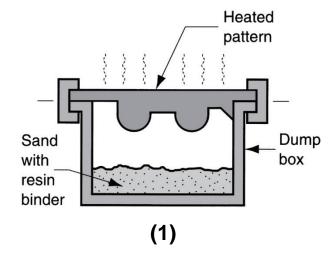

Continuous Casting

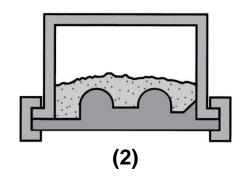
- ➤ It consists of pouring molten metal into one end of a metal mold (open at both ends), cooling rapidly, and extracting the solid product in a continuous length from the other end.
- ➤ Copper, brass, bronze, aluminum, cast iron, and steel can be cast.
- ➤ It is suitable for **any shapes of uniform cross-section** (round, square, rectangular, hexagonal, fluted, gear toothed, and many other forms; solid or hollow).

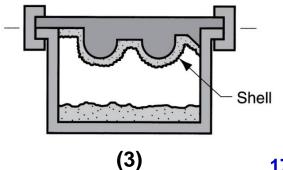

Advantages:

- ② It yields 10% more than rolling from ingots. Ingots have a porous end, which returns back to furnace. This waste is eliminated.
- ② A hollow center occurs from shrinkage during continuous casting, but it is welded shut after several rolling passes. Thus, continuous cast structure is more uniform and dense.
- ② Physical properties and surface finish are comparable to those obtained in other metal mold processes.
- © The process is essentially automatic, and hence unit labor cost is low.


Continuous Casting

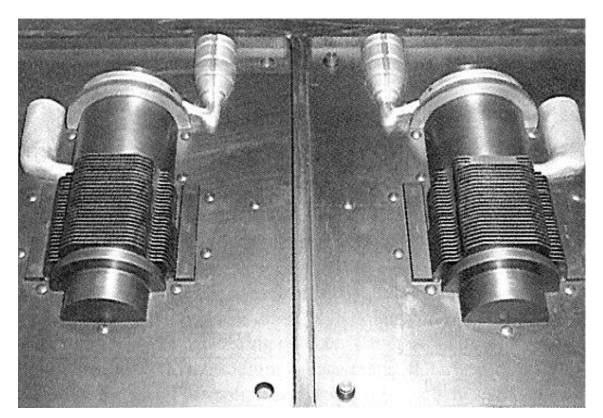

- ➤ A growing use is to produce **blooms**, **billets**, **slabs** for rolling structural shapes (cheaper than rolling from ingots).
- ➤ A bloom has square cross-section with min. size of 15 x 15 cm.
- ➤ A billet (smaller than bloom) has square cross-section from 4 cm up to the size of a bloom.
- ➤ Slabs with rectangular sections (min. 25 cm wide & 4 cm thick) are rolled from either ingot or bloom. The width is always 3 to 4 times the thickness. Plates, skelp and thin strips are rolled from slab.
- ➤ Other shapes are produced from slabs, blooms, and billets.





- 1. A metal pattern is heated and placed over a box containing sand mixed with thermosetting resin.
- 2. Box is inverted so that sand and resin fall onto the hot pattern, causing a layer of hard shell.
- 3. Box is repositioned so that loose uncured particles drop away.
- **4. Sand shell is heated** in oven for few minutes to complete curing.
- **5.** Shell mold is **stripped** from pattern.
- **6.** Two halves of shell mold are assembled, supported by sand or metal shot in a box, and **pouring is accomplished**.
- **7. Finished casting** with sprue is removed.

Advantages:


- © Good surface finish (up to 2.5 µm)
- © Good dimensional accuracy (± 0.25 mm)
- © Suitable for mass production

Disadvantages:

⊗ Expensive metal pattern

Application Area:

➤ Mass production of steel castings of less than 10 kg

Two halves of a shell mold pattern