

[ME 472]

Engineering Metrology & Quality Control

[CHAPTER 7] Measurement of Screw Threads

Assoc. Prof. Dr. A. Tolga BOZDANA

Mechanical Engineering Department
© 2022

Thread Terminology

- **Thread:** the helical grooves opened to inner and outer surfaces
- **External Thread (screw, bolt, stud):** threads on the external surface of a cylinder
- Internal Thread (nut): threads on the internal surface of a cylinder
- Crest (diş üstü): the edge/surface that joins the sides of a thread (the farthest from the cylinder/cone from which the thread projects)
- > Root (dis dibi): the edge/surface that joins the sides of adjacent threads (coincides with the cylinder/cone from which the thread projects)
- Thread Depth (dis derinligi): the distance between crest and root
- Thread Angle (dis açısı): the included angle between the thread flanks
- Pitch (adım/hatve): the distance between corresponding points on adjacent threads
- Major Diameter (diş üstü çap): the largest diameter of a screw thread
- Minor Diameter (diş dibi çap): the smallest diameter of a screw thread.
- Pitch Diameter (bölüm/böğür çapı): the diameter of an imaginary cylinder having surface of which cuts the thread forms where width of thread and groove are equal.
- Right-Hand (RH) Thread: threads axially winds in clockwise (CW) direction (threads are always RH unless otherwise specified)
- Left-Hand (LH) Thread: threads axially winds in counter-clockwise (CCW) direction (such threads are specially designated as LH)

Thread Terminology

- **Lead:** the distance that a threaded part moves axially in one complete revolution
- **Lead/Helix Angle:** The angle made by the pitch helix, which is defined as: $\lambda = \arctan\left(\frac{\text{lead}}{\pi * \text{pitch dia}}\right)$
- > Single Thread: threads produced on single (one) helix of cylinder, lead and pitch are equivalent (threads are always single unless otherwise specified)
- ➤ Multiple Thread: threads produced on two or more helices, lead is multiple of pitch (e.g. double thread: lead = 2 * pitch) (multiple threads permit more rapid advance without a coarser (i.e. larger) thread form)

Thread Types & Designations

- Threads are designated in Metric or British system.
- > Selection of the appropriate thread form depends upon functionality, size, and purpose of the job.

British System a: Major b: Thread c: Form (d: Extern e: Left-ha

- a: Major diameter (inch)
- b: Threads per inch
- c: Form (i.e. Unified National Coarse)
- d: External thread (B for internal)
- e: Left-hand thread (RH for right-hand)

Metric System

M 20 x 2

x: Metric screw thread y: Major diameter (mm)

y z z: Pitch (mm)

(K) Buttress

Thread Gauges

➤ Both external & internal threads can be inspected (checked) by means of thread ring & plug gauges of GO (green) & NO-GO (red).

Thread Ring Gauge (for external threads)

Thread Plug Gauge (for internal threads)

Screw Pitch Gauge

- Consist of a metal case having several leaves.
- Each leaf has teeth corresponding to definite pitch.
- ➤ The pitch is read directly from the leaf by matching the teeth on leaves with the threads on workpiece.

Thread Rolls

- Used for checking the internal threads only.
- They have various forms and dimensions.

Screw Pitch Gauge

Thread Rolls

Outside Thread Micrometer

- Measuring the pitch diameter of external threads.
- Various sizes of interchangeable spindle & anvil.

Inside Thread Micrometer

- Measuring the pitch diameter of internal threads.
- Various types & dimensions for specific applications.

Measurement using Three-Wire Method

- Very accurate way of measuring the threads by three lapped and polished wires and a micrometer.
- > "Best Size Wires" are in touch with the threads along pitch diameter. Use of best-size wires provides that measurement is least affected by possible errors to be present in the thread angle.

H_w: Height over Wires

D_w: Wire Diameter

D_i: Minor Diameter

D₀: Major Diameter

D_p: Pitch Diameter

h: Thread Depth

p: Thread Pitch

 α : Flank Angle

λ: Lead (Helix) Angle

Calculating Pitch Diameter by Three-Wire Method

> Pitch diameter for various thread types (having lead angle of 0-5°) can be determined as follows.

Thread Type	Thread Angle (2α)	Thread Depth (h)	Wire Size ^a (D _w)	Height over Wires (H _w)	Pitch Diameter ^{b,c} (D _p)
Sharp V	60°	0.8660254 p	0.57735 p	$D_0 - 1.73205 p + 3 D_w$	$H_w - (3 D_w - 0.86603 p)$
Metric	60°	0.649519 p	0.57735 p	$D_0 - 1.51555 p + 3 D_w$	$H_w - (3 D_w - 0.86603 p)$
Unified National	60°	0.649519 p	0.57735 p	D ₀ – 1.51555 p + 3 D _w	$H_w - (3 D_w - 0.86603 p)$
American National	60°	0.8 p	0.57735 p	$\frac{\mathbf{D_0} - 0.8660254 \ \mathbf{p} + 3.00049 \ \mathbf{D_w}}{1.00049}$	$H_{w} - \left(\frac{3.00049 D_{w} - 0.86603 p}{1.00049}\right)$
Whitworth	55°	0.64033 p	0.56369 p	$D_0 - 1.60082 p + 3.16568 D_w$	$H_{\rm w} - (3.16568 D_{\rm w} - 0.96049 p)$
Acme	29°	0.5 p	0.51645 p	$D_0 - 2.43334 p + 4.9939 D_w$	$H_w - (4.9939 D_w - 1.933357 p)$

^a The general equation for wire size: $\mathbf{D_w} = 0.5 \sec(\alpha) \mathbf{p}$

^c For tapered threads, taper angle (β) is employed: $\mathbf{D}_{p} = \mathbf{H}_{w} - \left[\mathbf{D}_{w}\left(1 + \operatorname{cosec}(\alpha)\right) - 0.5 \,\mathbf{p}\left(\operatorname{cot}(\alpha) - \tan^{2}(\beta) \tan(\alpha)\right)\right]$

b The general equation for pitch diameter: $\mathbf{D}_{p} = \mathbf{H}_{w} - \left[\mathbf{D}_{w}\left(1 + \csc(\alpha)\right) - 0.5 \,\mathbf{p} \,\cot(\alpha)\right]$

Thread Measurement by CMM

- Measurement of pitch diameter of relatively large size of threads (i.e. difficult to measure by conventional methods).
- **Both internal & external threads** can be measured.
- Need to use appropriate probe size for the given thread form.
- > Probe dia. (D) within allowable limits as in 1/8 of thread depth (h).

METHOD	ADVANTAGES	DISADVANTAGES	
Thread	© Inspects the complete thread profile	 ⊗ Reveals only if the thread is correct/incorrect (i.e. no information related to its tolerance) 	
Gauges	☺ Simple to use with minimum training		
&	© Threads are quickly judged correct/incorrect	☼ Time consuming for set-up & process control	
Thread	simply by use of GO & NO-GO gauge forms	⊗ Manufacturing tolerances and wear allowances on	
Rolls		the gauge give reduced tolerances on the thread	
Thread	© Very accurate if the flank angle is correct	⊗ Requires special and costly micrometers	
Thread Micrometers	© Used on threads of the same flank angle	⊗ Measures only the pitch diameter	
Micrometers	© Suitable for machine set-up & process control		
Thurs Mins	© Very accurate if flank angle & pitch are correct	⊗ Only external threads can be inspected	
Three-Wire Method	© Used for almost all thread types & forms	⊗ Requires calculation to find measurement result	
Metriod	© Suitable for machine set-up & process control	⊗ Wires must fit the appropriate micrometer	
Management	© Very accurate if flank angle & pitch are correct	☼ Time consuming for set-up & process control	
Measuring with CMM	© Measurement of dimensions & form of thread	⊗ Appropriate probe sizes must be employed	
WILLI CIVILVI	© Used for almost all thread types & forms	(i.e. small size of threads cannot be measured)	

