

[ME 472]

Engineering Metrology & Quality Control

[CHAPTER 8] Measurement of Gears

Assoc. Prof. Dr. A. Tolga BOZDANA

Mechanical Engineering Department
© 2022

Terminology (Spur Gear)

- > Circular Pitch (adım): circular distance between adjacent teeth on pitch circle
- ➤ Whole Depth (diş yüksekliği): total height of tooth
- > Working Depth (çalışma yüksekliği): height of tooth without clearance
- > Clearance (diş açıklığı): distance from top of tooth and bottom of mating space
- > Addendum (diş üstü yükseklik): radial distance from pitch to top of tooth
- > Dedendum (diş üstü yükseklik): radial distance from pitch to bottom of tooth
- > Tooth Thickness (dis kalınlığı): circular thickness of tooth along pitch circle
- Face Width (diş genişliği): width of tooth
- > Root Diameter (diş dibi çap): diameter of root circle
- > Outside Diameter (diş üstü çap): diameter of addendum circle
- > Pitch Diameter (bölüm çapı): diameter of imaginary pitch circle

Meshing of Gears

- The standard gear size is defined by module & number of teeth.
- > Only the gears having identical module can be meshed.
- Meshing of two spur gears with center distance is shown below (smaller one is called "pinion" whereas "gear" refers to the larger)
- ➤ Line of action (pressure line) is drawn tangent to the base circle of pinion and gear.
- ➤ The kinematic principle of gearing applies when gear teeth are in contact: angular velocity ratio of the meshing gears is constant along the line of action
- > Pressure angle is the angle between tangent to the pitch circles and the line of action.

Measurement of Gears

- **Gear measurement** according to **ANSI/AGMA 2002-C16**: (standard by American Gear Manufacturers Association)
 - ➤ Measurement over Pins: distance over pins placed within teeth
 - ➤ Gear Tooth Vernier Caliper: chordal tooth thickness & height
 - > Span Measurement: distance between a number of teeth

Measurement over Pins (Spur Gears)

> Tooth Thickness (t) is calculated by:

$$t = D_p \left[inv(e) - inv(\Psi) - \frac{D_g}{D_p * cos(\Psi)} + \frac{\pi}{z} \right]$$

- ➤ Pin Diameter (Dg) is defined as:
 - ➤ External gears: D_g = 13.97 m
 - ➤ Internal gears: D_g = 13.58 m
- > Distance over Pins (H) equals to:
 - \blacktriangleright Even no. of teeth: $H_e = 2h + D_g$
 - \rightarrow Odd no. of teeth: $H_0 = 2h * \cos(90^{\circ}/z) + D_g$
- > Involute of an angle is found as:

$$inv(x) = tan(x) - [x * (\pi/180^\circ)]$$

- ➤ Angle "e" is specified by:
 - ➤ Even no. of teeth: $e = \arccos \left[\frac{z * \cos(\Psi)}{D_p * (H_e D_g)} \right]$
 - ➤ Odd no. of teeth: $e = \arccos \left[\frac{z * \cos(\Psi)}{D_p * (H_o D_g)} * \cos \left(\frac{90^\circ}{z} \right) \right]$

Even number of teeth

Odd number of teeth

t: tooth thickness

D_p: pitch diameter

D_g: pin diamater

H: distance over pins

z: number of teeth

m: module

Ψ:pressure angle

e: angle of pin location

Gear Tooth Vernier Caliper (Spur Gears)

Usual practice is to measure Chord Thickness & Height:

$$X = 2R_p * sin(\theta) & Y = a + R_p [1 - cos(\theta)]$$

where
$$a=m=\frac{2Rp}{z}$$
 & $\theta=\frac{\pi/2}{z}=\frac{90^\circ}{z}$

➤ When many gears (with different number of teeth) to be measured, the calculations would become laborious. Thus, Constant (Fixed) Chord Thickness & Height are found as independent from number of teeth:

$$X_c = \frac{\pi}{4} * m * \cos^2(\Psi) \& Y_c = m - \frac{\pi}{8} * m * \sin(2\Psi)$$

➤ Constant (Fixed) Chord is the length joining the points on opposite faces of tooth, making contact with the mating teeth at the line of action.

Span Measurement (Spur Gears)

> Span Length (M) refers to the base tangent length, expressed in terms of base tooth thickness (t_b) and base pitch $(\mathbf{p_b})$ depending on teeth in span length (\mathbf{k}) :

$$M = t_b + p_b * (k-1)$$

Base Tooth Thickness (t_b) is expressed as:

$$t_b = m * z * cos(\Psi) * \left[\frac{\pi/2}{z} + inv(\Psi) \right]$$

> Base Pitch (p_b) is expressed as:

$$p_b = m * \pi * cos(\Psi)$$

Rearranging the terms gives the span length:

$$M = D_p * cos(\Psi) * \left[\frac{\pi/2}{z} + inv(\Psi) + \frac{\pi}{z} * (k-1) \right]$$

> As seen from figure, span length defines the points at which measuring device grabs the teeth during measurement.

 M_3 : span length (k = 3)

 M_5 : span length (k = 5)

D_b: base diameter

D_p: pitch diameter

Gear Measurement by CMM

METHOD	ADVANTAGES	DISADVANTAGES
Measurement over Pins	Measurement not affected by form errors and/or runout along the outside diameter	☼ The most appropriate pins must be selected (a bottleneck for gears having non-standard features)
	© Relatively cheaper & easier to use	Precision of caliper directly affects results
Gear Tooth Vernier Caliper		Measurement depend on two vernier readings, each of which is a function of the other.
		Measuring with "edge" of caliper jaw (not "face"), which does not lend itself to accurate measurement
Span	Measurement not affected by form errors and/or runout along the outside diameter	Not usable for high helix angle & narrow face width (spanning a sufficient number of teeth is the problem)
Measurement		Affected by errors in base pitch & tooth profile (due to modified profile from true involute shape)
Measurement by CMM	© Very accurate in case of undamaged teeth	☼ Time consuming for set-up & process control
	© Measurement of dimensions & form of gear	⊗ Appropriate probe sizes must be employed
Dy Civilvi	© Can be used for almost all gear profiles	(i.e. small size of gears cannot be measured)

