
ME 216 – Engineering Materials II

Course Information

Mechanical Eng. Dept. Gaziantep University Prof. Dr. Ömer EYERCİOĞLU Prof. Dr. Ali Tolga BOZDANA

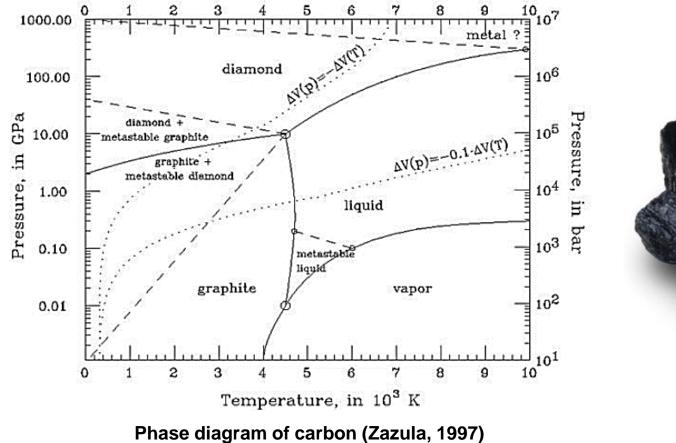
ME 216 – ENGINEERING MATERIALS II	
COURSE INFORMATION	
LECTURERS	TEXT BOOK & REFERENCE BOOKS
Prof.Dr. Ömer EYERCİOĞLU	 Engineering Metallurgy and Materials (S. SARITAŞ)
(eyercioglu@gantep.edu.tr)	 Modern Metallography (R.E. Smallman & K.H.G. Ashbee)
	 Engineering Metallurgy (R.A. Higgins)
Prof.Dr. Ali Tolga BOZDANA	 Metals Handbook (ASM International)
(bozdana@gantep.edu.tr)	 Materials Science and Engineering (W.D. Callister)
<u>GRADING</u>	LABORATORY
 Two Midterms (30% each) 	Metallography Laboratory
• Final (40%)	(Building of Labs at Mechanical Engineering Dept.)
LECTURE NOTES & ANNOUNCEMENTS	
Available at: https://akbis.gantep.edu.tr/detay/?A_ID=148576	

- 1 Introduction: Metallurgy & Materials Science, Material Selection
- 2 Metallurgical Examinations: Specimen preparation & analyses
- 3 Metals & Alloys: interatomic bonding, structure of crystals, crystal defects, etc.
- 4 Phase Diagrams: Concept & Maps of Equilibrium Phases
- **5 Extractive Metallurgy:** Ore-Dressing & Extraction processes
- 6 Production of Iron & Steel: Production of various types of Iron & Steel
- 7 Production of Nonferrous Metals: Production of selected nonferrous materials
- 8 Alloy Steels & Cast Irons: Classification, Properties, Applications
- 9 Nonferrous Industrial Alloys: Classification, Properties, Applications
- **10 Deformation of Metals:** Dislocations, Slip systems, Strengthening Mechanisms
- 11 Failure & Testing: Non-Destructive Testing (NDT) methods
- 12 Heat Treatment (Part I & II): Concept & Methods of Heat Treatment Processes
- **13 Metalworking & Fabrication:** Metallurgical aspects of material processing

Many scientist or engineer (mechanical, civil, chemical, electrical, etc.) will be exposed to **a design problem involving materials science**. Typical examples could be design of a transmission gear, the superstructure for a building, an oil refinery component, or an integrated circuit chip.

Most of the time, the problem is **to select the right material among many of them**. There are **several criteria** on which the final decision will be made. **The in-service conditions** must be characterized, which dictates **the material properties**. On rare occasions, a material possess the maximum or ideal combination of properties.

Thus, it may be necessary to trade-off one characteristic for another. The classic example involves strength and ductility: normally, a material having a high strength will have only a limited ductility. In such cases, a reasonable compromise between two or more properties may be necessary.

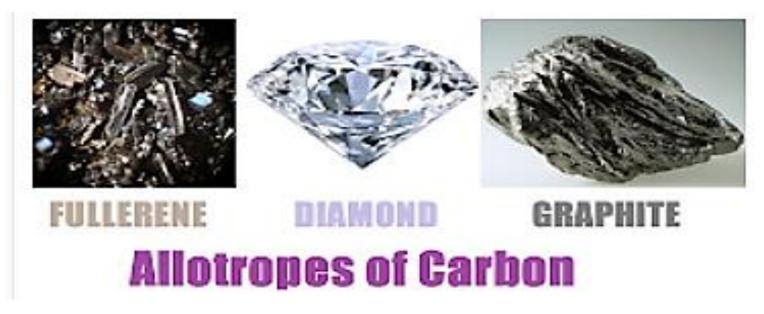

Another consideration in material selection is **deterioration in material properties** that may occur during service operation. For instance, significant reductions in mechanical strength may result from exposure to elevated temperatures or corrosive environments.

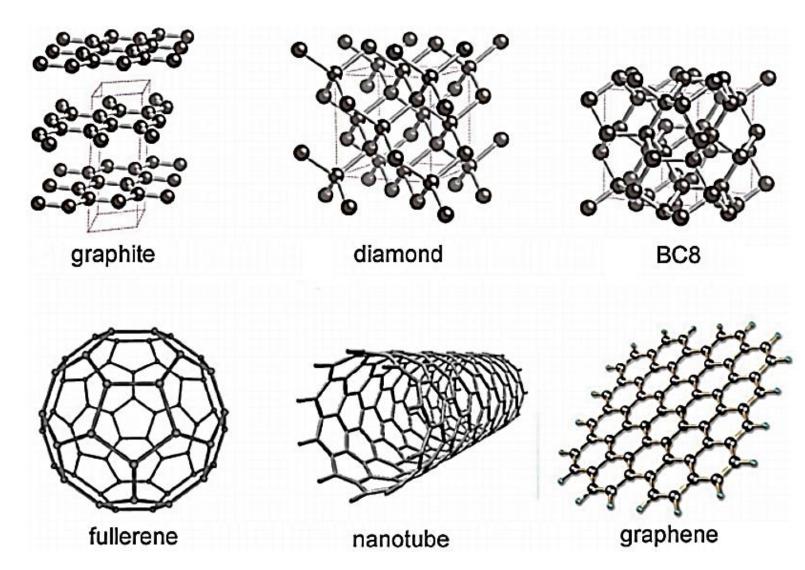
Finally, **the overriding consideration is economics**: **What will the finished product cost?** A material may be found that has the ideal set of properties, but is prohibitively expensive. Here again, **some compromise is inevitable**. The cost of a finished piece also includes any expense incurred during fabrication to produce the desired shape.

Thus, an engineer or scientist should be familiar with the various characteristics and structure-property relationships, as well as processing techniques of materials. The more proficient and confident engineer/scientist will be to make judicious materials choices based on these criteria.

Carbon

Carbon is a very interesting element. Being plentiful (but not in pure form), its occurrence is in the core of stars. Its vitality to life makes it perfect element to **study**, **search** for, **use** in alloys and tissues, **wear** on jewelry, and all.




Three allotropes of carbon:

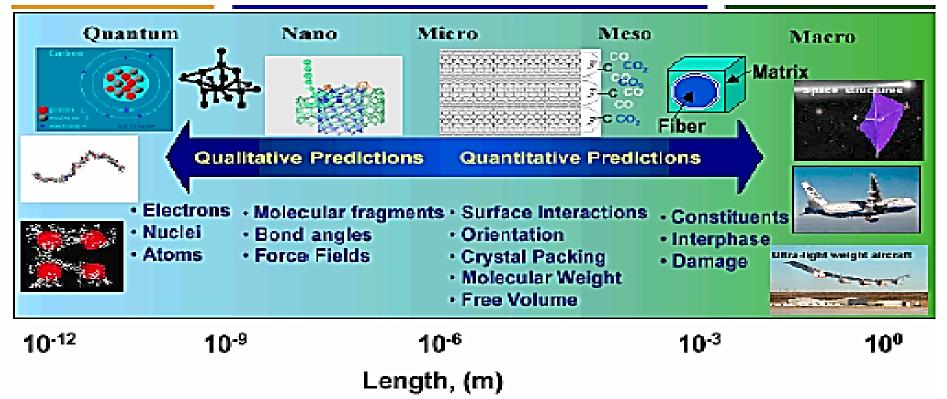
- Diamond: Formed due to rigid three-dimensional structures of carbon atoms. Each carbon atom bonded to 4 carbon atoms. The hardest substance on earth.
- 2) Graphite: Formed due to presence of hexagonal array layers one above another.Each carbon atom bonded to 3 carbon atoms with 2 single and 1 double bond.Smooth, slippery, and very good conductor of electricity.
- **3)** Fullerenes (C₆₀): Carbon atoms arranged in football-like shape. Typical uses are conductor, absorbent for gases, lubricant, cosmetics and biomedical applications.

Various Forms of Carbon

Length and Time Scales in Materials Modeling

by Greg Odegard, NASA

NASA Langley Research Center


Hampton, Virginia

Computational Materials - Nanotechnology Modeling and Simulation

Computational Materials

Computational Mechanics

