

[ME 472]

Engineering Metrology & Quality Control

[CHAPTER 6] Design of Limit Gauges

Assoc. Prof. Dr. A. Tolga BOZDANA

Mechanical Engineering Department
© 2022

Gauges in Metrology

- Used to inspect tolerance limits of parts.
- Instead of measuring actual dimensions, the conformance of part can be checked by GO (green) & NO-GO (red) gauges.
- > Advantages of gauges are:
 - ➤ free from errors
 - portable & no need for power supply
 - ➤ no auxiliary equipments and set-up
 - checking various dimensions
 - ➤ inexpensive inspection
 - ➤ providing uniform standards
- > Disadvantages of gauges are:
 - ➤ Some parts within tolerance limits may be rejected by workshop gauges.
 - ➤ Some parts out of tolerance limits may be accepted by inspection gauges.
 - ➤ Gauges must be made separately as their tolerance zones are different.

Plain Pin Gauge

Plain Plug Gauge

Progressive Plug Gauge

Thread Plug Gauge

Gauges for Inspection of Holes & Shafts

Plain Ring Gauge

Plain Snap Gauge

Adjustable Ring Gauge

Adjustable Snap Gauge

Taylor's Principle of Gauge Design

- It is used for determination of shape & dimensions of the gauge.
- The gauges are designed based on the following statements:
 - ➤ GO Gauge checks Maximum Material Condition (MMC), it should check as many dimensions as possible.
 - ➤ NO-GO Gauge checks Least Material Condition (LMC), it should check a single dimension at once.
- GO gauge fits into work in certain direction, but NO-GO gauge must not fit into work at specific orientations.
- > As seen from the example below, only one GO gauge is sufficient (for checking the lowest limit of all dimensions) whereas separate NO-GO gauges are required (for checking the highest limit of each dimension).

Need for Separate NO-GO Gauges

- > As seen in figure, a square-shape GO gauge can be used to **check both length & width** of work by moving the gauge along the length.
- > NO-GO (2) can be used to check the width, but not the length. Using NO-GO (1) to check the width would be meaningless as its size is very much oversized for that purpose.

Significance of Gauge Length

- > GO gauges have longer length (about 3 to 4 diameters of hole/shaft to be checked) so that possible geometric errors can be checked (e.g. straightness of a hole as seen in figure).
- > NO-GO gauges are always shorter (usually equal to hole/shaft diameter).

Wear of Gauges

> Gauges eventually lose their nominal size due to rubbing against work surface. Wear Allowance is considered in design of GO gauges. This is not applied to NO-GO gauges as they are not subjected to much wear.

Tolerances in Gauges

- Based on the related standard (BS 969:2008), the dimensions of gauges can be determined.
- ➤ Work Tolerance (WT) is found based on the highest limit (H) & the lowest limit (L) of work.
- > Then, the corresponding value of Gauge Tolerance (GT) is selected from table.
- ➤ Wear Allowance (WA) added to the size of GO plug gauge, but **subtracted** from the size of GO ring gauge.
- \rightarrow If WT < 0.009 mm, the work should be measured directly or by means other than gauges described in this standard.

Work Tolerance	Gauge Tolerance	Wear Allowance	Plug Gauge Dimensions (for checking holes)		Ring Gauge Dimensions (for checking shafts)	
WT (mm)	GT (mm)	WA (mm)	GO	NO-GO	GO	NO-GO
$\geq 0.009 \leq 0.018$	0.001	0.001	$L^{+0.002}_{+0.001}$	$H_{-0.001}^{0}$	$H_{-0.002}^{-0.001}$	L ^{+0.001}
$> 0.018 \le 0.032$	0.002	0.001	$L^{+0.003}_{+0.001}$	$H_{-0.002}^{00000000000000000000000000000000000$	$H_{-0.003}^{-0.001}$	$L^{+0.002}_{0}$
$> 0.032 \le 0.058$	0.003	0.002	$\rm L^{+0.005}_{+0.002}$	$H_{-0.003}^{}$	$H_{-0.005}^{-0.002}$	$L^{+0.003}_{0}$
$> 0.058 \le 0.100$	0.004	0.004	$L^{+0.008}_{+0.004}$	$H_{-0.004}^{}$	$H_{-0.008}^{-0.004}$	$L^{+0.004}_{0}$
$> 0.100 \le 0.180$	0.006	0.007	$L^{+0.013}_{+0.007}$	$H_{-0.006}^{}$	$H_{-0.013}^{-0.007}$	$L^{+0.006}_{0}$
$> 0.180 \le 0.320$	0.009	0.012	$L^{+0.021}_{+0.012}$	$H_{-0.009}^{}$	$H_{-0.021}^{-0.012}$	L ^{+0.009}
$> 0.320 \le 0.580$	0.014	0.025	$L^{+0.039}_{+0.025}$	$H_{-0.014}^{0}$	$H_{-0.039}^{-0.025}$	$L^{+0.014}_{0}$
> 0.580 ≤ 1.000	0.025	0.048	$L^{+0.073}_{+0.048}$	$H_{-0.025}^{}$	$H_{-0.073}^{-0.048}$	$L_{0}^{+0.025}$
> 1.000 ≤ 1.800	0.040	0.080	$L^{+0.120}_{+0.080}$	$H_{-0.040}^{}$	$H_{-0.120}^{-0.080}$	L ^{+0.040}
> 1.800 ≤ 3.200	0.050	0.155	L ^{+0.205} +0.155	$H_{-0.050}^{0}$	$H_{-0.205}^{-0.155}$	L ^{+0.050}

Hole Size: $20^{+0.1}_{-0.1}$

Highest Limit (H): 20.1 mm

Lowest Limit (L): 19.9 mm

Work Tolerance (WT): 0.2 mm

Work Tolerance	Gauge Tolerance	Wear Allowance	Plug Gauge Dimensions (for checking holes)	
WT (mm)	GT (mm)	WA (mm)	GO	NO-GO
> 0.180 ≤ 0.320	0.009	0.012	$L^{+0.021}_{+0.012}$	$H_{-0.009}^{}$

GO	NO-GO
\downarrow	\downarrow
19.9 +0.021 +0.012	201 0
+0.012	$20.1 \begin{array}{c} 0 \\ -0.009 \end{array}$
1	\downarrow
19.921 mm	20.100 mm
19.912 mm	20.091 mm

Exercise (2): Design of a Ring Gauge

Shaft Size: 20 + 0.3

Highest Limit (H): 20.3 mm

Lowest Limit (L): 20.0 mm

Work Tolerance (WT): 0.3 mm

·					
Work	Gauge	auge Wear Ring Gauge Dimer		Dimensions	
Tolerance	Tolerance	Allowance	(for checking shafts)		
WT (mm)	GT (mm)	WA (mm)	GO	NO-GO	
$> 0.180 \le 0.320$	0.009	0.012	$H_{-0.021}^{-0.012}$	$L^{+0.009}_{}$	

