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2.8 EXTENSION SPRINGS

• Extension springs are designed to carry tensile loads

since compression springs are not suitable to carry

tensile loads.
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F ?? F 

Hooks are used at two ends of the

extension spring for the loads to be

applied.

In addition, coils are no more

seperated from each other, on the

contrary coils are made to be in

close contact with each other to

resist tensile loads.



• There are different hook configurations of extension springs.

• However the most widely used one is the circular shape hook
with hook diameter equal to coil diameter.

• ‘Hooks’ at two ends of the spring are made by forming the
ends of the wire
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Since extension springs are produced as close-wound (shut coils) 

there is always a preload (Fp) on the spring.

This pre-load has to be overcome by the applied external load (Fe) 

to create an elongation on the spring.
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The deflection  δy in an extension spring under an external load of (Fe) 

is calculated as:
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and used in the deflection formula

to include effect of hook end deformations
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2.8.1 Extension Springs Under Load
Extension spring coil body is similar
to compression spring coil body
(except close wound condition).

Therefore similar shear stress (as in
the case of comp. springs) occurs in
the coil body of the extension spring
under tensile load.

In addition to this, two more stresses
occur in extension springs:

One; torsional shear stress in the
hook

Two : bending stress in the hook.

Hence, extension springs should be
designed (or checked) against three
different failures of the spring
material (body shear, hook shear
and hook bending)
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Body coil shear stress τ
(same as in compression 

springs)

hook shear 

stress, τB

Hook bending 

stress, σA
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Bending plane

Torsion plane
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A helical tension spring is made of 1.2 mm wire having yield strengths of
1280 MPa and 740 MPa in tension and torsion, respectively.

The springs has an OD of 12 mm, 36 active coils, and hook ends with
mean radii at the ends 5.4 mm for bending and 3.0 mm for torsion.

The spring is pre-stressed to 75 MPa during winding which keeps it
closed solid until an external load of sufficient magnitude is applied when
wound, the distance between the hook ends is 70 mm.

a) What is the spring preload?

b) What load would cause yielding?

c) What is the spring rate?

d) What is the distance between the hook ends if the spring is extended
until the stress just reach the yield strength.
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Example 4: Extension Springs
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The smallest is the critical (safest one) Fmax = 34.88 N  cause yielding in 
the hook. 
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• Here are some examples of torsion springs
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2.9 HELICAL TORSION SPRINGS

http://www.google.com.tr/imgres?imgurl=http://www.gripfaq.com/defimages/thumbs/ttorsiongripper.jpg&imgrefurl=http://www.gripfaq.com/hand_grippers/&usg=__tde6RWwj20-iYxDbCuNCzbfEoaI=&h=160&w=150&sz=12&hl=tr&start=537&zoom=1&tbnid=LAOEXbnpz0vf_M:&tbnh=98&tbnw=92&ei=mqZnTZKyGsGEOtn6rJ0L&prev=/images?q=torsion+spring+on+a+rod&start=520&hl=tr&sa=N&tbs=isch:1&prmd=ivns&itbs=1
http://www.hepsiburada.com/activa-ac44-el-yayi/productDetails.aspx?categoryid=369744&productid=sporac44


• Here is the geometry of torsion springs
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And these are the different legs/ends of the torsion springs
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23.03.2022 CHAPTER 2 SPRING DESIGN 16

2.9.1 Torsion Springs Under Load

While the torsion springs are used in applications where torque is required

(e.g. door hinges, dress catcher etc.) the wire itself is subjected to a bending

moment of M= F*r which produces a normal stress in the wire
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In curved beams of torsion springs
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for whole length; 

EI

dxM
du

2

2




L

EI

dxM
u

0

2

2

And for torsion springs; FrMandDNL t  

 
 

tt DNDN

EI

dxrF

EI

dxFr
u



0

22

0

2

22

for small element dx; 

y
F

u




Using castiglione’s theorem

for deflection: 

In torsion springs;  y= r θ



23.03.2022 CHAPTER 2 SPRING DESIGN 20

this is the angular deflection of the spring 

in radians under the effect of force F at a 

distance of  r from the spring center.

gives the deflection y along the direction of F

under the effect of force F.

With relation   y= r θ
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The torsional spring rate (similar to 

linear deflection F=k x) is then 
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The compressive forces, F’s winding up the

spring, cause an inner diameter reduction

in torsion spring.

Since the round bar (fitted inside the

torsion spring) is rigid the inner diameter of

the spring can’t be less than diameter of

the bar when the loads are applied.

are the inside diameter and coil

number when the load isn’t applied.

are the inside diameter and coil 

number after the load is applied.
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Example 5: for torsion springs

A stock torsion spring is made of 1.5 mm

music wire, has 6 coils and straight ends 50

mm long and 180o apart. The outside

diameter is 16 mm.

a) What value of torque (Fxr) would cause a

maximum stress equal to the yield

strength?

b) If the torque found in (a) is used as the

maximum working torque, what will be

the smallest value of the inside diameter.

(Di’=?)

c) Compute the angle of rotation

corresponding to the torque found in (a)
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Answers :
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Most of the spring parameters are unknown at the beginning of a design stage.

Each design is an iteration procedure of assuming some parameters and values

(material, C, d, D or Do, Di etc).

Afterwards, you have to check whether other geometric constraints and failure

criteria are satisfied or not. However, reaching a suitable solution may require lots

of iteration and calculation steps

To ease the design process, most spring design problems can be put into a

tabulation-iteration form similar to (spreadsheets) as seen in following example:

2.10 Design Procedure for the Helical Springs

Assume

d (mm) C (MPa) (MPa) (MPa) (MPa) Notes

6 861>536  failure

7 549>521 failure

8 372<508 

satisfactory

SK utS yS sySmax
syS?max 
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A helical compression spring of hard-drawn wire with a mean diameter

of 40 mm and squared and ground ends is assembled with a preload of

500 N and will operate to a maximum load of 1700 N.

a) Compute the wire diameter based on static failure with safety factor

1.25.

b) How many of total coils are required if the spring scale, k is required

to be 127 kN/m (end condition squared and ground).
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EXAMPLE 6:



Table 2.1 Spring materials and constant for estimating tensile strength

Material Size range

(mm)

Exponent, m Constant, A

(MPa.mmm)

Music wire 0.10-6.5 0.146 2170

Oil-tempered wire 0.50-12 0.186 1880

Hard-drawn wire 0.70-12 0.192 1750

Chrome-vanadium 0.80-12 0.167 2000

Chrome silicone 1.60-10 0.112 2000

30
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Here again strength is dependent on d which is already unknown,

However we can make use of information in Table 2.1 for “Hard

drawn wire” d = 0.70-12 mm

Similarly
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d

(mm) C MPa MPa MPa MPa Notes

6 6.67 1.075 861 1240.6 930.3 536.8 861>536  failure

7 5.71 1.0875 549 1204.4 903.3 521.2 549>521 failure

8 5.0 1.10 372 1174 880.5 508.0 372<508 

satisfactory

3

max
max

8

d

DF
Ks


 

sySmaxHere 

d

D
Cand

C
Ks 

5.0
1where 

mututyysy
d

A
SSSSS  and75.0and577.0

Thus if we use a table of iteration with d assumed (to be between 0.70 mm

and 12 mm)  and rest checked, we can reach a feasible solution

SK utS yS sySmax
maxsys Sn 

rySatisfactons 36.1372508 

Given:  D= 40 mm, squared and ground ends 
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2.11 OPTIMIZATION OF SPRING DESIGN

Springs are usually optimized in two

categories:

1)Objective is to minimize

a) weight

b) volume

c) wire diameter

d) Length

e) spring rate

2)Objective is to maximize

a) work done by spring (W=F*y)

b) Deflection

c) factor of safety

d) Reliability

e) fatigue strength
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In both categories of the

optimization all the design

requirements have to be

satisfied e.g.

•Static safety factor,

•buckling,

•critical frequency,

•fatigue safety factor,

•geometrical constraint (OD,

ID etc.)



2.12 Fatigue Loading of Springs

In most applications springs are subjected to fatigue loading since they

have to deflect between some points.

The life of the springs may change from a few thousands cycle to

millions of cycle (as in the valve spring application of automotive

vehicles)

Contrary to the rotating shafts under a vertical force in which completely

reversed stresses are quite ordinary, springs can only be used either as

compression or as tension but not together and most of the time they are

installed with a preload.
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Thus the stress-time diagram of

occur in helical springs.

The worst condition is with no-preload (τ min = 0)

with no pre-load with pre-loadt t

In designing springs to resist fatigue failure, we start with calculating

alternating and mean components of the force.
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• Springs under varying (fatigue) loads should always be 
checked against both static failure and fatigue failure.

• If the spring is compression type this is done for the 
shear stress in the body of the spring

• If the spring is extension type then we have to check all 
three conditions; shear in body, shear in hook and 
bending in hook.

• If the spring is torsion type then we have to check 
bending in the arm/leg of the spring

For example (Chapter 7, Eq.s 7.37 and 7. 38)

1)Check  for static  safety

2)Check for fatigue safety
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nS amsy  max

nSsea  for infinite life



For example 

1)Check  for static  safety

2)Check for fatigue safety
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nS amsy  max

nSsea  for infinite life

An extended study(11) of available literature regarding torsional fatigue

found that for polished, notch-free, cylindrical specimens subjected to

torsional shear stress, the maximum alternating stress that may be imposed

without causing failure is constant and independent of the mean stress in the

cycle provided that the maximum stress range does not equal or exceed the

torsional yield strength of the metal. With notches and abrupt section

changes this consistency is not found. Springs are free of notches and

surfaces are often very smooth. This failure criterion is known as the Sines

failure criterion in torsional fatigue.

10 F. P. Zimmerli, “Human Failures in Spring Applications,” The Mainspring, no. 17, Associated Spring

Corporation, Bristol, Conn., August–September 1957.

11Oscar J. Horger (ed.), Metals Engineering: Design Handbook, McGraw-Hill, New York, 1953, p. 84.
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For fatigue safety nSsea 

seS'

seedcse SkkkS 

should be satisfied for infinite life

endurence limit 

strength in

shear with relebility life, 

temperature and stress 

concentration  factor.

where

factorionconcentratstress
K

k

factoretemperaturk

factoryreliabilitk

c

e

d

c







1

C

CC

C

multiplierstress

factorcorrectionwahl

K

K
K

s

c 5.0
1

615.0

44

14










 

  springspeenedforkpsiMPaS

springsunpeenedforkpsiMPaS

se

se

5.67465

45310

'

'





ba kandk

forcorrected
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bc

sf NS 10

For finite life cases where  sfasea SandS   ;

Relation is used where

 

utsu

se

su

se

su

SS

S

S
b

S

S
c









60.0

8.0
log

3

1

8.0
log

2

psiinHBS

MPainHBSor
d

A
S

ut

utmut

500

45.3





suS

sfS

seS

Millions of cyclesN

Ssu , The ultimate shear strength, Or torsional modulus of rupture
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When analyzing or designing springs to resist fatigue, it is always

important to check critical (natural) frequency to be sure that spring

surge will not be a problem;
















m

k
fn

2

1

15

n
force

f
f 

The critical natural frequency of torsion springs is again

 sec/
2

1
cycleHz

W

kg
f

a

n 

ρ is the material weight density (N/m3) 

and  f n ≥ 15 fforce is still suggested for a reliable functioning.

44

222 



 t

ta

DNd
DN

d
LAW 



a) Calculate the spring rate (k).

b) Would this spring develop a permanent set if compresses solid? why?

c) Is the spring likely to buckle?

d) Based on 50 % reliability and infinite life, will the spring fail by fatigue?

e) What will be the safe fatigue life for the spring if it is to work with in an

environment of 400 oC with a reliability of 99 %?

f) What should be the maximum forcing frequency of the spring to prevent

spring surge if spring is held between parallel flat plates?
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Example 7: Failure of Compression Springs

A compression coil spring with; d=12 mm, Di = 140 mm, Nt = 12 coils,

squared and ground ends, HB of 380 after heat treatment, Lf= 500 mm is

assembled into a machine by compressing it to a length of 458 mm.

When the machine runs, the spring is compressed an additional 254 mm

so that the maximum load on the spring corresponds to a spring length of

458-254= 204 mm and the minimum load to a length of 458 mm.
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SOLUTION:

 
 









101528

103.7912

8

3

34

3

4

k

ND

Gd
k

a

mNormmN 585085.5

a)  

coilsNNN

mmdDD

steelformNPaGmmd

eta

i

10212

15212140

103.79,12 29






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b) In case of compressing solid, permanent set occurs if τs > Ssy

MPaS

d

A
SandSS

sy

mututsy

567131175.0577.0

;75.0577.0





MPaS
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ut

ut

131138045.3

45.3




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d

DF
K

s

s
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8
3










 567485 sys SSince 

 sfs

s

LLkF

C
K





?

5.0
1?

AcceptableC

d

D
C

124

66.12
12

152





 

04.1
66.12

5.0
1

6.2082

14450085.5







s

s

s

K

NF

F

mmL

dNL

s

ts

1441212 



No-permanent set occurs when compressed solid
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c) Buckling ?
8.33.3

152

500


D

L f

there is no risk of spring buckling for either of 

the end conditions (A and B). 

curve    A: flat-to-rounded- end

B: flat-to-flat ends.

.

.

.

.

max

f

y

L

FL

D

B

A

3.8

d) For infinite life condition; 0.1
a

se
sea

S
norS




0.1
a

se
sea

S
norSif


 this means the spring has a finite

life and it fails based on infinite life

requirements



no fatigue failure based on infinite life.

spring has INFINITE LIFE.
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'

seedcse SkkkS 

MPaS

S

se

se

5.289

310934.00.10.1





934.0
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
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

MPa

d

DF
K

a

a
sa

173

8
3








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   
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a

a
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2
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2

458500204500

2
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





0.1673.1
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

a

seS
n


mmNk 85.5
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e)

 

 

 12.7.934.0
1

)26.7(,75.0400

7.7814.0%99

Fig
K

k

EqChpterkCT

TablekR

c

e

d

o

c







MPaS

S

se

se

118

310934.05.0814.0





0.168.0
173

118

173





a

se

a

S
n

beforeasMPa





This means spring will have a FINITE life; Nf

fN

se

a

su

S

S



'

seedcse SkkkS 

seS endurance limit strength in

shear with reliability life,

temperature and stress 

concentration  factor.
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e)

For finite life region b

f

c

sfa NS 10

MPaS

SS

su

utsu

787

60.0





cyclesN

N

NMPa

f

f

f

208300

051.0

10173

243.0

243.053.3











This is the maximum safe number of cycles that the spring can be

loaded before failure.
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
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log

2
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


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c
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131138045.3
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



MPaa 173
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 
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
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F

F 

.

.

.

.

.

.

r

 45o

EXAMPLE 8: Torsion Springs
Design a straight ended helical torsion spring for

static loading of 100 Nm at a deflection of 45o with a

safety factor of 1.25 for static loading. Specify all

parameters necessary to manufacture the spring and

state all the assumptions.

For r = 100 mm   

F=1000 N (100kg)

if d and D are known then 

Na can be  determined.

  NmmNmFrT 000100100maxmax 

 revsturnso

8

1
45max 

turns

Nm

turns

NmT
kratespring 800

8

1

100' 


'

44
'

8.108.10 Dk

Ed
Nor

DN

Ed
kAlso a

a



 
 

3

maxmax
32

75.0
25.1

d

Fr
K

dA
nor

S
nSince

i

m
y






 14

14 2






CC

CC
K

where

i

 14

14 2






CC

CC
Ko
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Assume

d, mm C=8 D, mm NOTES

4 32 1089 17548 0.062 Not safe

10 80 918 1123 0.817 Not safe

11 88 902 844 1.068 Not safe

12 96 888 650 1.36 SAFE

C=12

10 120 918 1085.7 0.845 Not safe

11 132 902 816 1.105 Not safe

12 144 888 628.5 1.41 SAFE

Use tabulation method of iteration(assume oil tempered with 

A= 1880 MPa, m=0.186, d=0.5-12 mm)

made of oil tempered wire 

MPa,maxMPayS ,



y
S

n 

066.1;12
23.1;4
102.1;8







i

i

i

KC
KC
KC

for
d

D
C

 

turnsturnsN

N

a

a

25.5175.5

096.08008.10

102071012 943










turnsN

mmDmmd

a 25.5

9612





Dk

Ed
Na '

4

8.10

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EXAMPLE 9: Torsion Springs (10-20) Continue of Ex. 5)
A stock torsion spring is made of 1.5 mm music wire, has 6 coils and

straight ends 50 mm long and 180o apart. The outside diameter is 16 mm.

a) What value of torque (Fxr) Would cause a

maximum stress equal to the yield strength?

b) If the torque found in(a) is used as the maximum

working torque, what is the smallest value of the

inside diameter. (Di’=?)

c) Compute the angle of rotation corresponding to

the torque found in (a)

d) If the spring is to be used in an application subject to fatigue loading

based on the information;

-R= 95%,

-max torque= M,

-min torque= 0.25 M,

-infinite life.

What value of the maximum torque M can safety be applied?

FF



r r

1.5d mm

16oD mm

e) What number of cycle would be possible to run if a loading of Mmin=

0.25 Mmax and Mmax = 1.0 Mmax is applied with Mmax =0.4 Nm? (N= ? )



a, b and c were previously solved
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 

NmmNmFr

K

dS
Fr

i

y

47047.0

08.132

105.1101534

32

max

3363

max










degreesturnsnN 56.151421.0
115.1

47.0

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N
DD

a

a
ii 147.12

421.06

6
13' 







 
  turn

Nm

DN

Ed
k

k

Fr
N

a

115.1
60145.08.10

10207105.1

8.10
,

9434
'

'









SOLUTION:
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maxM M

min 0.25M M M
MMMM

M

M
MMMMM

M

m

a

625.0
2

25.1

2

25.01

2

375.0
2

75.0

2

25.0

2

minmax

minmax








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
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

lifeinfinitefor
1

nSS ut

m

e

a 


lifeinfinitefor
1

nSS y

m

e

a 


d)  Fatigue safety? 

Based on Modified Goodman theory of fatigue failure

Or based on Soderberg approach

In both cases

 
 mNin M
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'

edcbae SkkkkS 
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2045since700
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for music wires

From Ex. 5
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i) Based on Modified Goodman theory of fatigue failure

 mNM

MM
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









239.0

1

1

102045
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9
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9

nSS ut

m

e

a 1
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

nSS y

m

e

a 1




ii) Based on  Soderberg approach of fatigue failure



While LEWIS equation is used for static bending stress calculation AGMA
equation is used for fatigue condition and gives the bending stress in tooth root
under a force of Wt acting tangent to the pitch circle and including effects of
stress concentration (J).

For a fatigue-free safe operation the bending stress (σ) obtained from AGMA
equation should be compared with the endurance strength (Se) of the gear
material with a global safety factor nG, that is;
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Ge

v
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For Steels: For Cast Irons:
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


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misc.
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5.13 FATIGUE LOADING
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Figure 6–27 Fatigue diagram showing various criteria of failure. For each criterion, points on 

or “above” the respective line indicate failure. Some point A on the Goodman line, for example, 

gives the strength Sm as the limiting value of σm corresponding to the strength Sa, which, 

paired with σm, is the limiting value of σa.



Surface finish: for factor ka, use machined surface always since the tooth

root is always in machined or cast form even if the tooth flank is ground.

If the gear material is Cast Iron

The  Se’ values given in Table 

A-21 are fully corrected for 

surface factors (ka), thus use  

ka=1 but not corrected for 

other factors.

Figure 13–25 Surface finish factors ka for 

cut, shaved and ground gear teeth.
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59

For factor kb, Eq. 7-16 is generally used but, in this equation the dimension

d is the diameter of a round specimen. A spur gear tooth has a rectangular

cross section and so the method of Sec. 7-7 must be used to get an

equivalent value for d. For a rectangular cross section the formula for the

equivalent diameter is

)16.7(
2508189.1

81

097.0










 mmdmmd

mmd
kb

Size: The size factor, from eq. (7.16) is

  2/1
808.0 hbd 

mpdeq 

where h is the height of the section and b is the width. For a gear tooth h is

the tooth thickness which is about half the circilar pitch. And b is the face

with F. Substituting h= p/2 and F= 3p in Eq. (b) and solving gives

(a)

(b)

(c)

Thus we can use these three equation to work out a set of size factors

based on the module.
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By using different module values h and b were determined and then kb

values were calculated. The results for kb were then simply tabulated in

Table 13-7 for different modules, and kb values are taken from Table 13-7.

23.03.2022 CHAPTER 5  SPUR GEARS



THE 

END
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