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OBJECTIVES OF THE CHAPTER

• Identify, describe, and understand principles of several

types of springs including

– helical compression springs,

– helical extension springs and

– torsion springs.

• Design and analyze helical compression springs,

including compatibility with allowable stresses.

• Develop necessary analytical tools for spring design.

• Review principles of design for other types of springs,

such as extension springs and torsion springs.

• Select predesigned springs from manufacturers’ catalogs

and

• Incorporate them in appropriate designs.
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NO RIGID BODY BEHAVIOUR(AS IN STATICS), 

ON THE CONTRARY,

A LOT OF DEFLECTION AND DEFORMATION 

BUT MAINLY ELASTIC

PLASTIC DEFORMATION IN SPRINGS MEANS 
“FAILURE”

SPRINGS

y



2.1 INTRODUCTION
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When a designer wants rigidity, negligible deflection is an acceptable

approximation as long as it does not compromise function. Flexibility

is sometimes needed and is often provided by metal bodies with

cleverly controlled geometry. These bodies can exhibit flexibility to

the degree the designer seeks. Such flexibility can be linear or

nonlinear in relating deflection to load. These devices allow

controlled application of force or torque; the storing and release of

energy can be another purpose. Flexibility allows temporary

distortion for access and the immediate restoration of function.

Because of machinery’s value to designers, springs have been

intensively studied; moreover, they are mass-produced (and

therefore low cost), and ingenious configurations have been found

for a variety of desired applications. In this chapter we will discuss

the more frequently used types of springs, their necessary

parametric relationships, and their design.



MECHANICAL SPRINGS

Springs are mechanical elements 
used in machines for 

• exerting force, 

• storing and absorbing energy, and 

• providing flexibility. 

Springs are classified as 

• Wire springs, 

• Flat springs, or 

• special-shaped springs
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SPRING RATE

• Springs are the mechanical elements which transfer a tensile or

compressive force with a certain linear deflection or torque with

angular deformation.

• They also store energy and release it when the load or torque is

removed from the system.

• They have a characteristic called ‘’spring rate’’ , ‘’spring constant’’ or

‘’scale of spring’’ or
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Stiffening spring Softening springFig. 2.3  Non-linear springs 

(with variable spring rate)
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In general, springs may be classified as:

1. wire springs,

2. flat springs, or

3. special-shaped springs, and

there are variations within these divisions.

Wire springs include helical springs of round or square wire,

made to resist and deflect under tensile, compressive, or

torsional loads.

Flat springs include cantilever and elliptical types, wound

motor- or clock-type power springs, and flat spring washers,

usually called Belleville springs.

2.2 SPRING TYPES

8



2.2.1 OTHER SPRING TYPES

A. Wire springs

1)Helical compression springs 

– Standard constant rate 

– Variable pitch-variable rate

– Barrel

– Hour glass

– Conical

2)Helical extension springs
– Extension springs with hooks

– Draw bar springs (compression 
springs) used in tensile loading 
are a kind of extension springs 
applications.

3)Torsion  springs

9

B. Other springs

4)Spring washers 
(Belleville, wave, slotted 
finger, curved etc.)

5)Beam springs

6)Volute springs

7)Constant force

8)Power or motor springs



Here are some examples for wire springs
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Fig. 2.4 Wire springs of compression, extension and 

torsion types



These are the other springs (non-wire)
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Fig. 2.7 Beam springs

Fig. 2.6 Other type springs



2.2.2 Wire Springs

Wire springs are usually 

manufactured from circular 

crossection wires in different 

configurations like

• helical compression springs

• helical extension springs and

• torsion springs
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2.2.3 A torsion spring application in a garage door
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Torsion springs



This is how coil springs are manufactured on a lathe
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2.3 SPRING CONFIGURATIONS

There are two configurations of springs 

• a) In series b)   in parallel
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kt is the total system stiffness
in series applications.

16

1 2

1 2

1
1 1 1 1

1

2
2 2 2 2

2

1 2
1 2

1 2

1 2

1

2

.

.

.

,

1 1 1
...

t

t

t
t t t t

t

t
t

t

t

x x x

F F F

F
F k x x

k

F
F k x x

k

F
F k x x

k

F F F
F F F

k k k

k k k

 

 

  

  

  

   

  

1k

2k

tx

1X

2XF

into 

eqn 1

(2.1)

a) In series



b) In parallel
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2.4 SPRING MATERIALS 

Therefore springs are required to have: 

– High yield strength (and  hence high ultimate strength) and

– Low modulus of elasticity

There is, however, a limited number of materials and alloys suitable for 
such applications of springs. Examples are:
– Medium to high carbon steels
– Alloys steels
– Few of stainless steel alloys
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• Springs store potential energy while deflecting a noticable amount under 
reasonably high loads. 

• By doing so, they provide maximum elastic energy storage while not 
failing due to high stresses in material.

• Elastic energy storage capacity or Modulus of resilience was defined as 
the area under the σ-ɛ curve within elastic range
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Spring wires are usually “round” cross-section despite the fact that 
some rectangular cross-sections are available.

Wire diameters vary from  0.1 mm to 16 mm.

Common spring wire materials designated 

in different standards are:

SAE ASTM No Materials     
1066         A227 cold drawn (hard drawn) wire

1085         A228 music wire

1065 A229 oil tempered wire (general purpose use)

1070 A230 oil tempered wire (valve spring quality-fatigue loading)

6150         A232 chrome vanadium

30302       A313 stainless steel 

5254         A401 chrome silicon        

etc.                           etc.                                                                           
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As known from ME 215, Engineering Material I;

•Larger the material or specimen size higher the risk of having non-

homogenous material hence lower the material strength (Sy or Sut )

•On the contrary, smaller the material or specimen size lower the risk of

having non-homogenous material or higher the chance of having a more

homogenous and cleaner material hence higher the material strength.

If d ; Sut or If d ; Sut
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Similarly, the ultimate shear strength (Sus ) could be taken  as 
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where d is wire diameter in mm and constants A and m

are given in tables for different spring materials

( A= 1750 - 2150 MPa, m= 0.112 - 0.192)

For spring materials   Sut is defined as

Sy = 0.75Sut (2.5)

The yield strength in tensile loading (stress) is given as:

When applying distortion-energy theory the yield strength in shear 

loading (stress) is given as:

Ssy = 0.577Sy or  nearly Ssy = 0.60Sy (2.6)

Sus = 0.60Sut (2.7)



2.4.3 Materials for Helical Springs

• Springs are most commonly manufactured by hot- or cold-working
processes depending upon the material size, the spring index (C), and
the desired properties.

• There are a numerous spring materials available for the designer. These
include: plain carbon steels, alloy steels, corrosion resisting steels,
phosphor bronze (nonferrous alloy), spring brass, beryllium copper and
various nickel alloys.

Table 2.1 Spring materials and constant for estimating tensile strength

Material Size range

(mm)

Exponent, m Constant, A

(MPa.mmm)

Music wire 0.10-6.5 0.146 2170

Oil-tempered wire 0.50-12 0.186 1880

Hard-drawn wire 0.70-12 0.192 1750

Chrome-vanadium 0.80-12 0.167 2000

Chrome silicone 1.60-10 0.112 2000
22

The most common way for selecting spring materials is
by looking at their tensile strength, a property that is only
defined once the wire diameter is chosen: )4.2(
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Where 

A (MPa.mm-m) is a constant defined 

through experimentation, 

d (mm) is the diameter of the wire and 

m is the slope for the Force vs. 

Displacement graph for the wire. 

Strength(Sut) has units of MPa.

A=2000,   m=0.167
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)8.2(52.035.0 utsyut SSS 

Sy usually varies between 60% to 95% of Sut.

Torsional yield strength (Ssy) of wire can be estimated using

distortion energy theory (Ssy = 0.577Sy).

This then results in the range (steel only):
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Here are the lower limits of Ssy for different spring materials:

For Music & Hard-drawn wire:
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Valve Spring Wire (Cr-Va, Cr-Si), hardened and tempered carbon and 
low alloy steel wire:

)10.2(50.0 utsy SS 

Nonferrous Materials: )11.2(35.0 utsy SS 

)9.2(45.0 utsy SS 



Compression springs carry only compression loads.

Compression springs are the wire springs wound helically with coils not 

touching each other under no load and while operating.

The figure below shows compression spring under different loads
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2.5 Helical Compression Spring Geometry



There are 4 common types of ends of compressions springs:

– Plain end

– Squared end

– Plain & ground end

– Squared & ground end
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Here again 4 common types of compressions springs ends and 
corresponding inactive (dead) coils due to squaring and grinding
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d

D
C 

“d” is the wire diameter

“D” is the mean coil diameter

Nt is the number of coils (7.5 coils here)

Lf (or Lo) is the free length of the spring

Ls is the solid length of the spring

and spring index, C, is a parameter

defined as:

28



29

The solid height/length of a spring is the height of a compression 

spring when under sufficient load to bring all the coils into contact 

with adjacent coils. 

For squared ground ends  dNNL ets 

Where Nt = total number of coils, 

“Ne” represents the dead coils and can vary 

depending on the amount ground off (see Table).

“d” is the spring wire diameter. 

The free length is represented by Lo. 

For a squared and ground end spring this free 

length (Lo) takes the form:

dpNL ao 2

p
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Here are the similar equations for different end conditions:

 dNNL ets  dpNL ao 2



2.5 Helical Compression Springs Under Loads
(Recommended Design Conditions)

• For C>>12 springs tend to tangle and thereby require individual 
packaging (spring are likely to buckle)

• For C<<4 spring wire diameters become too large compared to the 
diameter of the coil thus increasing the risk of surface cracking when 
winding the spring (spring are difficult to manufacture)
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)12.2(124 C

The number of active coils (when designing springs) is suggested as:

)13.2(153  aN

Spring Index factor C usually takes a value between   4 and 12.
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Springs are not to be used in first and

last 15% of the deformation range

hence leaving a “clash allowance”

before the solid condition

Spring rate or stiffness of the spring is

the ratio of force applied to

corresponding deflection (or the slope

of the curve)

)14.2(
y

F
k 

In case the spring is forced to solid 
condition, design factor of solid 
height, ns is also suggested as

)15.2(15.0

)16.2(2.1sn
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Compression spring under 
axial load F
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FreeBodyDiagram of the same spring

wire being exposed to

• direct shear (F) and 

• torsional shear (T) loads

Applying section 

method and 

taking upper half 

of the spring
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Defining the spring index, C=D/d

and using it in the stress equation

leads to the following expression for

the maximum stress:

)19.2(
5.0

1
8

3max 









Cd

FD




)18.2(
84

32max
d

FD

d

F


 

)20.2(
2

125.0
1 







 











C

C

C
K s

)21.2(
8

3max
d

FD
Ks


 

Now defining the shear stress correction factor, Ks, as

the maximum shear stress in the spring element is then given as
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Within the general equation

KW is called “Wahl correction factor” and

includes two types of effects:

• Shear stress concentration (direct shear)

effect (Ks) and

• curvature effect (Kc) due to circular coil

shape

Ks was derived for a straight wire and does not

include curvature effect.
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Thus the actual multiplication factor for coil springs is K (including 

both direct shear and curvature effects) and can be defined as:

KC is the curvature effect and can be found from
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2.5.2 The Effect of Curvature on Stress

Original equations above are based upon the
assumption of wire being straight.

The curvature of the wire actually increases the
stress on the inside of the wire and decreases
the stress on the outside of the wire.

)26.2(
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Therefore Ks in equations is replaced by K

which corrects for both the curvature and the

direct shear effects.

Following two equations could be used for factor

K since the results are so close to each other.
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KW is called “Wahl factor”, KB is called “Bergstrasser factor”



• In static type loadings (constant load), the curvature factor

Kc will be neglected and only factor Ks will be used

within equation

3
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 Whereas in fatigue type loadings (varying load), the

curvature factor Kc will be used, but not as a stress raiser, on

the contrary as a strength reduction factor in Sse. Factor Ks

will still be used in stress equation
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If we calculate K values for different C values:
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Kc ke

C Ks Kw KB KB/Ks 1/Kc

4 1,125 1,40375 1,38462 1,23077 0,81250

5 1,1 1,3105 1,29412 1,17647 0,85000

6 1,08333 1,2525 1,2381 1,14286 0,87500

7 1,07143 1,21286 1,2 1,12 0,89286

8 1,0625 1,18402 1,17241 1,10345 0,90625

9 1,05556 1,16208 1,15152 1,09091 0,91667

10 1,05 1,14483 1,13514 1,08108 0,92500

11 1,04545 1,13091 1,12195 1,07317 0,93182

12 1,04167 1,11943 1,11111 1,06667 0,93750



Graph of K values for different C values:
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Graph of K values for different C values:
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Remembering from failure theories (static loading case) that:

• For a safe spring under maximum load, the maximum stress

created within the spring material should be less than the strength

of the spring material,

• Or the ratio of spring material strength to the maximum stress

created in the spring should be more than unity.

orS symax syS
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The external work done on an elastic member in deforming it is transformed

into strain, or potential, energy. If the member is deformed a distance y, and if

the force-deflection relationship is linear, this energy is equal to the product of

the average force and the deflection, or

This equation is general in the sense that the force F can also mean

torque, or moment, provided, of course, that consistent units are used for

k. By substituting appropriate expressions for k, strain-energy formulas

for various simple loadings may be obtained. For tension and

compression and for torsion, for example, we employ Eqs. (2–29) and

(2–30)
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and obtain
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32)-(2torsion
2

2

GJ

lT
U 

To obtain an expression for the strain

energy due to direct shear, consider the

element with one side fixed in Fig. a.

The force F places the element in pure

shear, and the work done is U = Fδ/2.

Since the shear strain is γ = δ/l = τ/G =

F/AG, we have

33)-(2sheardirect  
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A most unusual, powerful, and often surprisingly simple approach to deflection

analysis by an energy method called Castigliano’s theorem. It is a unique way of

analyzing deflections and is even useful for finding the reactions of indeterminate

structures. Castigliano’s theorem states that when forces act on elastic

systems subject to small displacements, the displacement corresponding to

any force, in the direction of the force, is equal to the partial derivative of the

total strain energy with respect to that force. The terms force and displacement

in this statement are broadly interpreted to apply equally to moments and angular

displacements. Mathematically, the theorem of Castigliano is
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where δi is the displacement of the point of application of the force Fi in the

direction of Fi . For rotational displacement Eq. (2–34) can be written as
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where θi is the rotational displacement, in radians, of the beam where the

moment Mi exists and in the direction of Mi .
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As an example, apply Castigliano’s theorem using Eqs. (2–31) and (2–32) to 

get the axial and torsional deflections. The results are
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2.5.3 Deflection and Stiffness of Helical Springs

By using Castiglione's theorem, the total
strain energy for a helical spring is
composed of a torsional component and a
shear component.

Now if the spring is deformed a distance y
and if the Force– displacement relationship
is elastic (linear), the strain energy is equal
to the product of the average force and the
deflection.
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Therefore to find total deflection the total strain energy 

is partially derivated wrt the force F

Since C = D/d

The spring rate (known also as the scale of the spring) is :
y

F
k 

k is spring constant

Na is active coil number
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• Remembering that there are 4 common types of compression spring ends
with some coils made inactive (dead) due to squaring and grinding:
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• For important or critical applications springs

should be both squared and ground for

better load transfer and stability.

• Stability means a spring will not buckle

under load

50

A long/tall spring with small mean diameter

will easily buckle (similar to long columns)

under load and this will prevent the

functioning of the spring.

This condition of buckling (also called spring

surge), therefore, is a failure of the spring.

To prevent buckling of springs the

geometrical ratios between

• free length and mean diameter and Lf /D

• deflection under maximum load and free

length, y / Lf

have to be kept in certain limits.

http://www.efunda.com/designstandards/springs/images/spring_buckling_dwg1s.gif
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Since springs are flexible in nature they may buckle depending on the end

conditions and Lf /D and y / Lf ratios when they are loaded in compression.

  dDD ohole 1.0

To prevent buckling:

 1) Either the ratios of y / Lf and  Lf /D should be kept in 

certain limits given in figure in text book.

 2) or a rod should be inserted through the spring to hold it 

straight

 3) or it should be inserted into a hole

iD

rodD

  dDD rodi 1.0

springinsiderod DD 

springoutsidehole DD 
holeD

oD
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http://www.efunda.com/designstandards/springs/images/spring_buckling_dwg1s.gif


2.6 Buckling of the Springs in Compression

Springs with

Lf /D > 3.8 are likely to fail by buckling

Lf /D < 3.8 are likely not to buckle (SAFE).   
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EXAMPLE 1

A Chromium-Vanadium wire spring has a mean diameter of 10.0 mm,

a spring index, C = 5.56, and there are 100 active coils. The pre-load

is 20 N and the modulus of elasticity is 207.5 GPa.
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Determine:

i. The tensile and torsional yield strengths of the wire

ii. The initial torsional stress in the wire

iii. The spring rate; and

iv. The force required to cause the spring to be stressed to the yield 

strength



(This is not a design problem, therefore we do not use 3<Na<15 criterion. 

This is an analysis problem since spring specifications like material, 

diameter, coil number, etc. are known)

i. C = 5.56 = D/d = 10/d

therefore, d = 10/5.56 = 1.8 mm

Using Table 2.1,

 
MPaSut 00.1813

8.1

2000
167.0



Table 2.1 Spring materials and constant for estimating tensile strength

Material Size range

(mm)

Exponent, m Constant, A

(MPa.mmm)

Music wire 0.10-6.5 0.146 2170

Oil-tempered wire 0.50-12 0.186 1880

Hard-drawn wire 0.70-12 0.192 1750

Chrome-vanadium 0.80-12 0.167 2000

Chrome silicone 1.60-10 0.112 2000
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SOLUTION:



  MPaSS uty 1360181375.075.0 

Then calculating the tensile Yield Strength:

We can then get the Torsional Yield Strength 

(based on distortion energy theory):

 

  AnsMPa

SSSS ututysy

7851813433.0

433.075.0577.0577.0




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089.1
56.5

5.0
1

5.0
1 



















C
Ks

MPa
d

DF
K i

si 1.95
)8.1(

10208
089.1

8
33










Using Ks given below:

Initial stress τi can be calculated as follows:

ii. In order to calculate τ we first need to get the 

shear-stress correction  factor K (Ks or  K)

3

8

d

FD
K


 
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iii. The spring stiffness can now be calculated (with G= 77.2 GPa):

AnsmmN

ND

Gd
k

a

/013.1

100)10(8

)8.1()102.77(

8 3
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3

4








iv. Finally the force required to yield the material can now be 

calculated:

AnsN

DK

Sd
F

s

sy

sy

165

10089.18

785)8.1(

8

33








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3

8

d

FD
Ks


 



A helical spring of wire diameter 6 mm and spring index, C, 

6 is acted by an initial load of 800 N. 

After compressing it further by 10 mm the stress in the wire 

is 500 MPa. 

Find the number of active coils.

G=84 000 MPa.
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EXAMPLE 2



D= spring index (C) x d= 6x6= 36 mm

 
3max

8

d

FD
Kw


 

2525.1
615.0

44

14







CC

C
Kw

Note that in the case of static load one 

can also use Ks instead of Kw

 

NF

F

F

d

FD
Kw

6.940

3682525.1

6500

6

368
2525.1500

8

3

3

3max




















mmN
y

F
k /14

10

8006.940





turnsN

kD

Gd
N

or
ND

Gd
k

a

a

a

21

21
14368

684000

8

,
8

3

4

3

4

3

4










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d

D
C 

SOLUTION:











C
K s

5.0
1

CC

C
KW

615.0

44

14







34

24






C

C
KB

C Ks Kw KB

6 1,08333 1,2525 1,2381



D= spring index (C) x d= 6x6= 36 mm

 
3max

8

d

FD
Kw


 

Note that in the case of static load one 

can also use Ks instead of Kw

mmN
y

F
k /8.28

10

8008.1087





turnsN

kD

Gd
N

or
ND

Gd
k

a

a

a

25.10

21.10
8.28368

684000

8

,
8

3

4

3

4

3

4










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d

D
C 

SOLUTION:

083.1
6

5.0
1

5.0
1 










C
K s

CC

C
KW

615.0

44

14







34

24






C

C
KB

C Ks Kw KB

6 1,08333 1,2525 1,2381

 

NF

F

F

d

FD
Kw

8.1087

368083.1

6500

6

368
083.1500

8

3

3

3max






















2.7 CRITICAL FREQUENCY OF 

HELICAL SPRINGS
Since the springs are flexible they can vibrate at certain frequencies
under the effect of loadings.

When the loading frequency ‘f ‘of the spring under the dynamic load
F= F*sin wt reaches one of its natural frequencies (f n) the spring
coils will vibrate at large amplitudes until the coils impact each other
and create high impact loads and hence fail.

To prevent this resonant condition (f = f n ) the forcing frequency f
should be much smaller than f n . f << f n ;

the suggested limit is f n ≥ 15 f .
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The fundamental critical frequency should be greater than 15 to 20

times the frequency of the force or motion of the spring in order to avoid

resonance with the harmonics.

If the frequency is not high enough, the spring should be redesigned to

increase k or decrease spring weight W.



Natural frequency
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  )32.2(sec/
2

1
cycleHz

W

kg
f

a

n 

44

222 



 t

ta

DNd
DN

d
LAW 

ρ is the material weight density (N/m3) or

 31.2sec/
32

2
2

rad
Gg

D

d

N
f

t

n




For flat-flat surfaces

For flat-free end   )33.2(sec/
4

1
cycleHz

W

kg
f

a

n 

  )30.2(sec/
2

1
cycleHz

W

kg
f

a

n 

where 

k = spring rate

g = acceleration due to gravity

Wa= mass of spring in N

)29.2(
8 3

4

aND

Gd
k 
















m

k
fn

2

1
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124 C

Example 3: for compression springs
Design a compression spring for a static load known deflection such that

the spring must give a minimum force of 500 N and a maximum force of 750

N over an adjustment range of 20 mm deflection.

Solution: Use the least expensive, unpeened, cold drawn (hard drawn)

spring wire (ASTM A 227) since the load is static (Table 2.1)

From Table 2.1; for hard drawn wires diameter range is between

0.70 mm-12 mm

The coefficients are: m= 0.192, A= 1750 MPa to be used in eqn.

mut
d

A
S 

0.1
max

max 



sy

ssy

S
norS

sysolid S

3) check for buckling

Design criteria: 1) 

2)

4) not  a must , but  check if

(related figure)?
D

L f
 ?max

fL

y

5) critical frequency
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MPa

d

FD
K s

6.1014

4

)32)(750)(8(
0625.1

8

max

3max

3max















For a spring to be designed, the parameters:

d=?     D=?      Nt = ? Lf = ? should be determined.

1) Since none of the design parameters are known, we have to start 

by assuming a wire diameter d between 0.7-12 mm

Let d= 4 mm and C= 8 D= Cxd = 32 mm

Thus :

 
 

!0.157.0
6.1014

580

580134175.0577.0

1341
4

1750

max

192.0

FAILURE
S

n

MPaS

MPaS

sy

s

sy

ut









mmd

mmD

NF

C
K s

4

32

750

0625.1
5.0

1








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Re-size the  wire diameter to reduce τmax

Let d= 5 mm and C= 8 D= 40 mm

    MPaSMPaS

MPaK

syut

s

556128575.0577.08.1284
5

1750

4.649
5

)40)(750(8
0625.10625.1

8

5.0
1

192.0

3max








!0.185.0
4.649

556

max

FAILURE
S

n
sy

s 


Re-size to d= 5  mm and C= 6   D= 30mm

Ks=1.0833,   τmax =496.5MPa,   Ssy=556MPa,   

ns=556/496.5= 1.12   >1.0 SAFE

Thus a spring material of ASTM A 227 with

d= 5 mm and D= 30 mm satisfies the criteria of  1 and 2    (C=6)
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Given a deflection of 20 mm over a force range of 500 N - 750 N

mNkor 12500mmN
mm

N

y

F
k 5.12

20

250

20

500750










To find out other parameters  Nt and Lf we proceed as:

Also

mmN
ND

Gd
k

a

5.12
8 3

4



where

?

30

103.79103.79

5

2329









aN

mmD

mmNGormNG

mmd
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   
 

coilsN

kD

Gd
N

a

a

356.18
2700000

49562500

5.12308

103.795

8
3

34

3

4








So
rounded to nearest quarter

coilsNa 5.18

Assuming squared and ground ends coilsNNNN eate 5.202 

mmL

mmL

yyyLL

f

f

initialworkclashsf

5.165

5.165402035.102







 

mm
k

F
y

mmyy

problemingivenmmy

mmdNL

initial

wclash

w

ts

40
5.12

500

32015.015.0

20

5.10255.20

min 







3) Check for buckling
f

wi

f

f

L

yy

L

y
and

D

L 
max
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3) Check for buckling

363.0
5.165

2040

452.5
30

5.165

max 









f

wi

f

f

L

yy

L

y

buckletolikely
D

L

 If one end of spring is rounded (curve A) it buckles,

but if both ends are compressed between flat and parallel surfaces

(curve B) it does not buckle although near the curve B.

.

.

.

.

.

.

DL f

fL

ymax

A
B

8.3



So these springs should be compressed between flat and parallel surfaces.

If not compressed between parallel-flat surfaces then some kind of rod or 

hole mechanism should be used to fix the springs.

If  you use rod inside the spring:

If  you fit the spring in a hole:

  mmd

dDd

rod

irod

5.2451.0530

1.0

max

max





  mmD

dDD

hol

ohol

5.3551.0530

1.0

min

min




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4) 

sysolid S

?

 
 

 
MPa

N

LLkF

forcetherequires

solid

sfsolid

solid

38.521
5

305.7878
0833.1

5.7875.1025.1655.12

3
















failurenoOK

S
n

solid

sy

solid

!0.107.1
38.521

556





3

8

d

FD
Kssolid


 

Ssy=556 MPa



 
 

kgm

m

kg

mm

m
LAm

s

s

296.0

7800105.2030
4

5
33

3
9

2











 




5) critical frequency

 sec/
2

1
cycleHz

m

k
f

s

n 

 sec/7
15

102

15
cycleHz

f
f n

force  if dynamic force is applied
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 sec/102
296.0

/12500

2

1
cycleHz

kg

mN
fn 

mmN
ND

Gd
k

a

5.12
8 3

4



 sec/
2

1
cycleHz

W

kg
f

a

n 
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SOLUTION:

ASTM A 227 hard-drawn wire with 

6

30

5







C

mmD

mmd

ends. parallel andflat  5.16535

 ends. ground and squared  coils5.2025

mmLmmD

NmmD

fo

ti







TO BE CONTINUED
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