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OBJECTIVES OF THE CHAPTER

Identify, describe, and understand principles of several
types of springs including

— helical compression springs,

— helical extension springs and

— torsion springs.

Design and analyze helical compression springs,
Including compatibility with allowable stresses.

Develop necessary analytical tools for spring design.

Review principles of design for other types of springs,
such as extension springs and torsion springs.

Select predesigned springs from manufacturers’ catalogs
and

Incorporate them in appropriate designs.



SPRINGS

NO RIGID BODY BEHAVIOUR(AS IN STATICS),
ON THE CONTRARY,

A LOT OF DEFLECTION AND DEFORMATION
BUT MAINLY ELASTIC

PLASTIC DEFORMATION IN SPRINGS MEANS
“FAILURE”
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2.1 INTRODUCTION

When a designer wants rigidity, negligible deflection is an acceptable
approximation as long as it does not compromise function. Flexibility
IS sometimes needed and is often provided by metal bodies with
cleverly controlled geometry. These bodies can exhibit flexibility to
the degree the designer seeks. Such flexibility can be linear or
nonlinear in relating deflection to load. These devices allow
controlled application of force or torque; the storing and release of
energy can be another purpose. Flexibility allows temporary
distortion for access and the immediate restoration of function.
Because of machinery’s value to designers, springs have been
iIntensively studied; moreover, they are mass-produced (and
therefore low cost), and ingenious configurations have been found
for a variety of desired applications. In this chapter we will discuss
the more frequently used types of springs, their necessary
parametric relationships, and their design.



MECHANICAL SPRINGS

Springs are mechanical elements
used in machines for

« exerting force,
 storing and absorbing energy, and
 providing flexibility.

Springs are classified as
* Wire springs,

* Flat springs, or

« special-shaped springs




SPRING RATE

Springs are the mechanical elements which transfer a tensile or
compressive force with a certain linear deflection or torque with
angular deformation.

They also store energy and release it when the load or torque is
removed from the system.

They have a characteristic called “spring rate” , “spring constant” or

_dF

“scale of spring” k = F or K=—_
y dy
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Fig. 2.1 Deflection of compression
spring under load
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Fig. 2.2 Linear springs
(with constant spring rate)

Fig. 2.3 Non-linear springs
(with variable spring rate)

Constant rate

Stiffening spring

Force, N

dF

dy

y, deflection, mm

Softening spring




2.2 SPRING TYPES

In general, springs may be classified as:

1. wire springs,
2. flat springs, or
3. special-shaped springs, and

there are variations within these divisions.

Wire springs include helical springs of round or square wire,
made to resist and deflect under tensile, compressive, or
torsional loads.

Flat springs include cantilever and elliptical types, wound
motor- or clock-type power springs, and flat spring washers,
usually called Belleville springs.



2.2.1 OTHER SPRING TYPES

A. Wire springs B. Other springs
1)Helical compression springs 4)Spring washers
— Standard constant rate (Be”eV”Ie, Wave, SIOtted

— Variable pitch-variable rate finger, curved etc.)

_ Barrel 5)Beam springs
— Hour glass 6)Volute springs
— Conical 7)Constant force

8)Power or motor springs
2)Helical extension springs

— Extension springs with hooks v Ft S

— Draw bar springs (compression ErEr ===
springs) used in tensile loading
are a kind of extension springs
applications.

3)Torsion springs




Here are some examples for wire springs

4

Constant pitch  Conical Barrel Hourglass  Variable pitch

Varations of helical compression springs

Helical extension spring Drawbar spring Helical torsion spring

Fig. 2.4 Wire springs of compression, extension and
torsion types
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These are the other springs (non-wire)

=h +! »

—{b—t
Belleville spring

Constant force spring

Constant force spring motor

Fig. 2.6 Other type springs

B | o

Fig. 2.7 Beam springs
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2.2.2 Wire Springs

Wire springs are usually
manufactured from circular
crossection wires in different
configurations like

* helical compression springs
 helical extension springs and
* torsion springs

12




2.2.3 A torsion spring application in a garage door
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This i1s how coll springs are manufactured on a lathe
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b) in parallel

There are two configurations of springs

* a)In series

2.3 SPRING CONFIGURATIONS
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a) In series
X, =X +X,[1

F=F=F[2
F
Flzkl.xl—>x1=k—l -
1
I:2=k2.x2—>x2:i . into1
2 egn
F
F=k.X — X% = k_t )
t
W _h, R EoR-F
k., k Kk,
1 1 1
k, K, i K, e @) k; is the total system stiffness

In series applications.

16



b) In parallel

X =%, (1)
F=F+F(2)

F, =k, X =k, .X
F,=k,.x, =k,.x into(2)
- =k .X

KX =K. X+K,.X
K. =k +K, +.. (22

K, total system stiffness in parallel
applications

17



2.4 SPRING MATERIALS

Springs store potential energy while deflecting a noticable amount under
reasonably high loads.

By doing so, they provide maximum elastic energy storage while not
failing due to high stresses in material.

Elastic energy storage capacity or Modulus of resilience was defined as
the area under the o-¢ curve within elastic range

1 1 o, 1S;]
=29 ‘EGV(_j 2 Y

Therefore springs are required to have:
— High yield strength (and hence high ultimate strength) and

— Low modulus of elasticity

There is, however, a limited number of materials and alloys suitable for
such applications of springs. Examples are:
— Medium to high carbon steels

— Alloys steels
— Few of stainless steel alloys



2.4.1 SPRING WIRE

Spring wires are usually “round” cross-section despite the fact that
some rectangular cross-sections are available.

Wire diameters vary from 0.1 mm to 16 mm.

Common spring wire materials designated
In different standards are:

SAE ASTM No

1066 A227
1085 A228
1065 A229
1070 A230

6150 A232
30302 A313
5254 A401

etc.

¢ @
—

Materials
cold drawn (hard drawn) wire
music wire
oil tempered wire (general purpose use)
oil tempered wire (valve spring quality-fatigue loading)
chrome vanadium
stainless steel
chrome silicon
etc.




2.4.2 Tensile Strength of Spring Materials

As known from ME 215, Engineering Material I,

sLarger the material or specimen size higher the risk of having non-
homogenous material hence lower the material strength (S, or S, )

*On the contrary, smaller the material or specimen size lower the risk of
having non-homogenous material or higher the chance of having a more
homogenous and cleaner material hence higher the material strength.
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If d i/ ; SutT
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For spring materials S, is defined A%

S (2.4)

ut ™ m
. @
_‘% where d is wire diameter in mm and constants A and m

are given in tables for different spring materials
(A= 1750 - 2150 MPa, m=0.112 - 0.192)

The yield strength in tensile loading (stress) is given as:
S, =0.75S,, (2.5)

When applying distortion-energy theory the yield strength in shear
loading (stress) is given as:

Ssy = 0.577Sy Or nearly Ssy = O6OSy (2.6)

Similarly, the ultimate shear strength (S . ) could be taken as

S, = 0.60S,, (2.7)

A
o
Y
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2.4.3 Materials for Helical Springs

Springs are most commonly manufactured by hot- or cold-working
processes depending upon the material size, the spring index (C), and
the desired properties.

There are a numerous spring materials available for the designer. These
Include: plain carbon steels, alloy steels, corrosion resisting steels,
phosphor bronze (nonferrous alloy), spring brass, beryllium copper and
various nickel alloys.

The most common way for selecting spring materials is

by looking at their tensile strength, a property that is only A
defined once the wire diameter is chosen: Sy = qm (2.4)
Table 2.1 Spring materials and constant for estimating tensile strength
Material Size range Exponent, m Constant, A
(mm) (MPa.mmm)
Music wire 0.10-6.5 0.146 2170
Oil-tempered wire 0.50-12 0.186 1880
Hard-drawn wire 0.70-12 0.192 1750
Chrome-vanadium 0.80-12 0.167 2000
Chrome silicone 1.60-10 0.112 2000




S A (24) A=2000, m=0.167

ut qm
Where 3000 7
A (MPa.mm™) is a constant defined g 2500 1
through experimentation, S 2000 -
d (mm) is the diameter of the wire and ® 1500 E———
m is the slope for the Force vs. 1000 |
0o 1 2 3 4 5 6 7

Displacement graph for the wire.

wire diameter, mm

Strength(S,,) has units of MPa.

S, usually varies between 60% to 95% of S;.

Torsional yield strength (Sy) of wire can be estimated using
distortion energy theory (Sq, = 0.577S,).

This then results in the range (steel only):

0.35S,, <S,, <0.52S,, (2.8)

Sy —



Here are the lower limits of S for different spring materials:

For Music & Hard-drawn wire: Sy, = 0.435 (2.9)

Valve Spring Wire (Cr-Va, Cr-Si), hardened and tempered carbon and

low alloy steel wire:
S,, >0.50S,, (2.10)

Nonferrous Materials: Ssy >0.35S,, (2.11)



2.5 Helical Compression Spring Geometry

Compression springs carry only compression loads.

Compression springs are the wire springs wound helically with coils not
touching each other under no load and while operating.

The figure below shows compression spring under different loads
(F = 0) F

. - ! s
l o Operating e
= 2 deflection
Freo l
'(}.‘:mh Instalied |‘ o
| =3
Iir"lmh Operating Solid

length length
Lo Ls
: : l _t
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There are 4 common types of ends of compressions springs:
— Plain end
— Squared end
— Plain & ground end
— Squared & ground end

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Plain end, right hand (¢) Squared and ground end,
left hand

(b) Squared or closed end, (d) Plain end, ground,
right hand left hand

26



Here again 4 common types of compressions springs ends and
corresponding inactive (dead) coils due to squaring and grinding

fa) \ ( <)

Plain end Plain and ground Squared  Squared

and ground
Plain and Squared or Squared and

Term Ground Closed Ground

End cails, M, 0 ] 2 2
Tatal coils, M, N N+ N+ 2 N+ 2

Ll



“d” Is the wire diameter
“D” Is the mean coil diameter

N, is the number of coils (7.5 coils here)

L (or L,) is the free length of the spring working zolid
range length

L is the solid length of the spring — Ly
clash /

and spring index, C, is a parameter allowance (A EEL B

defined as:

R
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The solid height/length of a spring is the height of a compression
spring when under sufficient load to bring all the coils into contact

with adjacent coills. | — (Nt _ Ne)d

For squared ground ends S

Where N, = total number of coils,

“N.” represents the dead coils and can vary
depending on the amount ground off (see Table).

“d” is the spring wire diameter.
The free length is represented by L.

For a squared and ground end spring this free
length (L,) takes the form:

L, = pN, +2d

clash f
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Here are the similar equations for different end conditions:

Type of Spring Ends
Plain and Squared or Squared and
Ground Closed Ground
End coils, M, 0 ] 2 2
Total cails, M, N, N+ N, + 2 N, + 2
Free length, I, pN_+ d plN_ 4+ 1] pN_ 4+ 3d piNL 4+ 2d
Solid length, L di, + 1) diN, difd, + 1) diN,
Fitch, p (L — d)iN, /N, + 1) (g — 3d)iN (L — 2d)/iMN,

Ls:(Nt_Ne)d L, = PN, +2d

30



2.5 Helical Compression Springs Under Loads
(Recommended Design Conditions)

Spring Index factor C usually takes a value between 4 and 12.

czg 4<C<12 (2.12)

« For C>>12 springs tend to tangle and thereby require individual
packaging (spring are likely to buckle)

« ForC<<4 spring wire diameters become too large compared to the
diameter of the coil thus increasing the risk of surface cracking when
winding the spring (spring are difficult to manufacture)

The number of active coils (when designing springs) is suggested as:

3<N, <15 (2.13)




load, F
4

|--— free length L, —HH

i€ 2000 DOUG WRIGHT, U'w &

Ziele Hinlt Spring rate or stiffness of the spring is
. @F':h the ratio of force applied to

E*g corresponding deflection (or the slope
o of the curve) =
M k = — (2.14)
" y
* salid Springs are not to be used in first and
..linf:h last 15% of the deformation range

Jach % hence leaving a “clash allowance”

before the solid condition

£>015  (2.15)

In case the spring is forced to solid
condition, design factor of solid
height, n.is also suggested as

n. >1.2 (2.16)

S
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Applying section
method and
taking upper half
of the spring

- D >
@ FreeBodyDiagram Of the same spring
Compression spring under wire being exposed to
axial load F - direct shear (F) and

- torsional shear (T) loads
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Wire cross section resists both direct shear stress and
torsional shear stress at the same time

T @9 (2.17)

Direct Torsional
shear part shear part
Since FD d 4 2
2 2 32 4
The shear stress is then expressed as
8FD
T (2.18)

max 7Zd3

Direct shear

Torsional
part

shear part 34



Defining the spring index, C=D/d
and using it in the stress equation = dez N 87;? (2.18)

leads to the following expression for

the maximum stress:
S8FD ( 0.5
max 3 1 +—
7d C

T

] o

Now defining the shear stress correction factor, K, as

K. = (1+ Ej - (ZC +1j (2.20)

C 2C
the maximum shear stress in the spring element is then given as
8FD
Trax = Ky — (2.21)
8FD

or in general terms T, = K JorE (2.22)



Within the general equation

SED Ky Is called “Wahl correction factor” and
T = K— (2.22) includes two types of effects:
d « Shear stress concentration (direct shear)
effect (K,) and
_4C-1 0.615 e curvature effect (K.) due to circular coil
= + (2.23) c
AC-4 C shape

Kw

K, was derived for a straight wire and does not
include curvature effect.

Thus the actual multiplication factor for coil springs is K (including
both direct shear and curvature effects) and can be defined as:

K, =KK. (2.24)

K¢ Is the curvature effect and can be found from

K

S



2.5.2 The Effect of Curvature on Stress

A4F 8FD 8FD(1 O5j(219) — 8FD

T

max=7zd2+7zd3(218)z' 3

4 .
#=~— Neglecting
s Turviiure

Original equations above are based upon the
assumption of wire being straight.

The curvature of the wire actually increases the _

. . . Including
stress on the inside of the wire and decreases curvature
the stress on the outside of the wire.

Wire cross section

CLUF¥ITYrY )

Therefore K, in equations is replaced by K [ ___ |}
which corrects for both the curvature and the | (;‘:.\“ﬁ';ﬁ) \r:emmincnnpr;ng
direct shear effects.

Following two equations could be used for factor \ 8FD
K since the results are so close to each other.

4C -1 O 615 4C + 2
Ky = (2.23) K (2.26) 7, =KD

4C — 4 C - AC -3

Ky is called “Wahl factor”, Kg is called “Bergstrasser factor”



In_static type loadings (constant load), the curvature factor
K. will be neglected and only factor K, will be used
within equation

a 8FD

r =K

S7Zd3

Whereas in_fatigue type loadings (varying load), the
curvature factor K, will be used, but not as a stress raiser, on
the contrary as a strength reduction factor in S_.. Factor K,
will still be used In stress equation

1 8FD
KC:&>1 > ke__ T :K

K, \c i

S.=k_ *k *k *k, *k *k,*S_'  (2.27)
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10

12

Ks
1,125
1,1
1,08333
1,07143
1,0625
1,05556
1,05
1,04545
1,04167

Kw
1,40375
1,3105
1,2525
1,21286
1,18402
1,16208
1,14483
1,13091
1,11943

KB
1,38462
1,29412

1,2381

1,2
1,17241
1,15152
1,13514
1,12195
1,11111

Kc
KB/Ks

1,23077
1,17647
1,14286
1,12
1,10345
1,09091
1,08108
1,07317
1,06667

If we calculate K values for different C values:

ke

1/Kc
0,81250
0,85000
0,87500
0,89286
0,90625
0,91667
0,92500
0,93182
0,93750



1,45

1,4

1,35

1,3

1,25

1,2

1,15

1,1

1,05

Graph of K values for different C values:

K Values

——Ks

—o—Kw

10

—o— KB

12

14
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1,5

1,4

1,3

1,2

1,1

0,9

0,8

Graph of K values for different C values:

K Values

—-—Ks —eoKw KB —KB/Ks —1/Kc

[ R e S
//

4 6 8 10 12 14
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Remembering from failure theories (static loading case) that:

For a safe spring under maximum load, the maximum stress
created within the spring material should be less than the strength

of the spring material,

Or the ratio of spring material strength to the maximum stress
created in the spring should be more than unity.

8F D
T SO¢  OF r. =K e <8,

Sy
n, = >1.0
T

Max



Strain Energy

The external work done on an elastic member in deforming it is transformed
into strain, or potential, energy. If the member is deformed a distance y, and if
the force-deflection relationship is linear, this energy is equal to the product of
the average force and the deflection, or

F ==
_F _F U=—vyv=—
K = ; (2.14) or y=- > y K

This equation is general in the sense that the force F can also mean
torque, or moment, provided, of course, that consistent units are used for
K. By substituting appropriate expressions for k, strain-energy formulas
for various simple loadings may be obtained. For tension and
compression and for torsion, for example, we employ Eqgs. (2-29) and
(2-30)

5:i| g:T_I
AE GJ
_AE

K T (2.29) k—% % (2.30)



and obtain

U=
2 AE

tension and compression

(2-31)

U= G torsion (2-32)

To obtain an expression for the strain
energy due to direct shear, consider the
element with one side fixed in Fig. a.
The force F places the element in pure
shear, and the work done is U = Fo/2.
Since the shear strain isy = 0/l = 1/G =
F/AG, we have

F| .
U = direct shear
AG

_"'5|"_.F
-

¥i

¥ b

i) Pure shear element

(2-33)

ko | II}:

i f
. P i -

A f'rr |I II|
mﬂ- 4

-y — =

(&) Beam bending element



Castigliano’s Theorem

A most unusual, powerful, and often surprisingly simple approach to deflection
analysis by an energy method called Castigliano’s theorem. It is a unique way of
analyzing deflections and is even useful for finding the reactions of indeterminate
structures. Castigliano’s theorem states that when forces act on elastic
systems subject to small displacements, the displacement corresponding to
any force, in the direction of the force, is equal to the partial derivative of the
total strain energy with respect to that force. The terms force and displacement
in this statement are broadly interpreted to apply equally to moments and angular
displacements. Mathematically, the theorem of Castigliano is

5= (2-34)
é]:

i
where 0Oi is the displacement of the point of application of the force Fi in the
direction of Fi . For rotational displacement Eq. (2—34) can be written as

oU
6 =—" (2-35)

oM.
where 8i is the rotational displacement, in radians, of the beam where the
moment Mi exists and in the direction of Mi .



As an example, apply Castigliano’s theorem using Egs. (2-31) and (2—-32) to
get the axial and torsional deflections. The results are

s_ O (F1_F
OF (2AE ) AE
,_ (T T
sT(2GJ ) G

U= i direct shear (2-33)
2AG




2.5.3 Deflection and Stiffness of Helical Springs

By using Castiglione's theorem, the total
strain energy for a helical spring is
composed of a torsional component and a
shear component.

g

Now if the spring is deformed a distance y
and if the Force— displacement relationship
Is elastic (linear), the strain energy is equal
to the product of the average force and the
deflection.

F F* U — T F

U=—y=— = +
27 2k 2GJ  2AG
Substituting
4 2
T=T2 =N, 3 =2 A= T, | 4FD'N,  2F°DN,
d‘G d°G

N = Active Coil Number

47



Therefore to find total deflection the total strain energy
Is partially derivated wrt the force F 23 5
B A4F°D°N, 2F°DN,

_ 03U _8FD’N, 4FDN, V=—ic T 4x
oF  d'G  d%G

| 8FD3Na( 1 j
SinceC=D/d Y= 1+

d*G 2C?
8FD°N
o 2 2.28

The spring rate (known also as the scale of the spring) is: Kk = F
d*‘G

k 3
8D°N

|12

(2.29) k is spring constant
a N, is active coil number



Remembering that there are 4 common types of compression spring ends
with some coils made inactive (dead) due to squaring and grinding:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Plain end, right hand (¢) Squared and ground end,
left hand

(b) Squared or closed end, (d) Plain end, ground,
right hand left hand

49



« For important or critical applications springs
should be both squared and ground for
better load transfer and stability.

« Stability means a spring will not buckle
under load

A long/tall spring with small mean diameter |
will easily buckle (similar to long columns)
under load and this will prevent the
functioning of the spring.

This condition of buckling (also called spring
surge), therefore, is a failure of the spring.

To prevent Dbuckling of springs the
geometrical ratios between
+ free length and mean diameter and L; /D
 deflection under maximum load and free
length, y / L;
have to be kept in certain limits.
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Since springs are flexible in nature they may buckle depending on the end
conditions and L,/D andy/ L, ratios when they are loaded in compression.

To prevent buckling:

» 1) Either the ratios of y / L; and L;/D should be kept in
certain limits given in figure in text book.

straight D, 4 <D.

insidespring

,
% » 2) or arod should be inserted through the spring to hold it

» 3) or it should be inserted into a hole
>D

outsidespring

hoIe

hole

(D, -D,,,)>0.1d

(D, — DO)Z 0.1d

52
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2.6 Buckling of the Springs in Compression

Springs with
L:/D > 3.8 are likely to fail by buckling

L;/D < 3.8 are likely not to buckle (SAFE).

flat- round flat-flat
MECHAN ICAL SPRINGS
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rounded surface. For curve
0 h '
0 2 "4 6 8 10 B both ends of the spring 38

T are compressed against flat
Ratio of free length to mean diameter, I /D and parallel surfaces.



EXAMPLE 1

A Chromium-Vanadium wire spring has a mean diameter of 10.0 mm,
a spring index, C = 5.56, and there are 100 active coils. The pre-load
Is 20 N and the modulus of elasticity is 207.5 GPa.

Determine:

i. The tensile and torsional yield strengths of the wire
ii. The initial torsional stress in the wire

ii. The spring rate; and

iv. The force required to cause the spring to be stressed to the yield
strength



SOLUTION:

Table 2.1 Spring materials and constant for estimating tensile strength
Material Size range Exponent, m Constant, A
(mm) (MPa.mmm)
Music wire 0.10-6.5 0.146 2170
Oil-tempered wire 0.50-12 0.186 1880
Hard-drawn wire 0.70-12 0.192 1750
Chrome-vanadium 0.80-12 0.167 2000
Chrome silicone 1.60-10 0.112 2000

(This is not a design problem, therefore we do not use 3<Na<15 criterion.
This is an analysis problem since spring specifications like material,
diameter, coil number, etc. are known)

. C=556=D/d=10/d
therefore, d = 10/5.56 = 1.8 mm
Using Table 2.1,

S, = 2000 =1813.00 MPa

ut (1 8)0.167




Then calculating the tensile Yield Strength:

S, =0.75S,, =(0.75x1813)=1360 MPa

We can then get the Torsional Yield Strength
(based on distortion energy theory):

S,, =0.577S,
=(0.433x1813

(0.577x0.75)S,, = 0.433 S,
=785 MPa Ans

N’



Il. In order to calculate 7 we first need to get the
shear-stress correction factor K (K, or K)

8FD

3

r =K

Using K, given below:

K, = 1+E = 1+£ =1.089
C 5.56

Initial stress T i can be calculated as follows:

r =K, 25D —1.089><8X20X§S —95.1 MPa

| > ad® (1.8




lil. The spring stiffness can now be calculated (with G=77.2 GPa):
‘_ Gd*  (77.2x10°)x(1.8%)
8D°N, 8x (10%) x100

=1.013N/mm Ans

Iv. Finally the force required to yield the material can now be
calculated:

'S, gx(18%)x785  _ _ 8FD

F,, = — ;
¥ 8K.D  8x1.089x10 7d”
=165N Ans




EXAMPLE 2

A helical spring of wire diameter 6 mm and spring index, C,
6 Is acted by an initial load of 800 N.

After compressing it further by 10 mm the stress in the wire
IS 500 MPa.

Find the number of active coils.

G=84 000 MPa.



SOLUTION: D ro=(k,)2E2

C — d max 7Zd3
8F x36
D= spring index (C) x d= 6x6= 36 mm 000 =1.2525x 76
_(K )SFD / F = 5007 x6°
Frae =)™ 13 Ksz(l +Ej 1.2525x 8% 36
¢ ~.F =940.6 N
4C -1 O 615
K, = =1.2525 _
AC — 4 C k:F:94O.6 800:14N/mm
y 10
Note that in the case of static load one Gd*
can also use K, instead of K, — SD°N or,

« _4C-1 0615 , _4C+2
vWTac_a'C " 4C-3 \ ~ Gd* 84000x6*

* 8D% 8x36°x14
N, =21 turns

~ 21

Ks Kw KB
6 1,08333 1,2525 1,2381



8FD

. — K
SOLUTION: e e = (Ko ) —3
8F x 36
D= spring index (C) x d= 6x6= 36 mm 500 =1.083x 6°
3
SED c_ 500x 7 x 6
e = (Ku) =3 1.083x8x 36
. F=1087.8 N
0.5 0.5
K.=|1+— |=1+—=1.083 —
s (+C) 5 k:F:1087.8 800:28.8N/mm
y 10
Note that in the case of static load one Gd*
can also use K, instead of K, K = SD°N or,

4C-1 0.615 K _4C+2
= +

K. = =— 4 4
W T aCc 4 C B~ 4C_3 N :Gd _ 84000x 6 ~10.21
a 3 3 = 4U.

8D’k 8x36°x28.8

N, =10.25 turns

Ks Kw KB
6 1,08333 1,2525 1,2381



2./ CRITICAL FREQUENCY OF
HELICAL SPRINGS

Since the springs are flexible they can vibrate at certain frequencies
under the effect of loadings.

When the loading frequency ‘f ‘of the spring under the dynamic load
F= F*sin wt reaches one of its natural frequencies (f ,) the spring
coils will vibrate at large amplitudes until the coils impact each other
and create high impact loads and hence fall.

To prevent this resonant condition (f = f ) the forcing frequency f
should be much smallerthanf . f<<f_ ;

the suggested limitisf ,215f.

The fundamental critical frequency should be greater than 15 to 20
times the frequency of the force or motion of the spring in order to avoid
resonance with the harmonics.

If the frequency is not high enough, the spring should be redesigned to
Increase k or decrease spring weight W.



Natural frequency f. =% \I;Tg Hz (cycle /sec)  (2.30)
where i 1 |k
K = spring rate f, = Vm
g = acceleration due to gravity
W_= mass of spring in N 2 242
W, = AxLxp="9" % DN, x p = Z 4 PNio
4 4
or P is the material weight density (N/m3)

4
f, 2 d2 rad /sec  (2.31) k=_0C
721\|t D 2,0  8D3Na

1 |k
For flat-flat surfaces  fn =7 Wg Hz(cycle /sec)  (2.32)

(2.29)

a

1 |k
For flat-freeend o =7 Wg Hz(cycle /sec)  (2.33)

a



Example 3: for compression springs

Design a compression spring for a static load known deflection such that

the spring must give a minimum force of 500 N and a maximum force of 750
N over an adjustment range of 20 mm deflection.

Solution: Use the least expensive, unpeened, cold drawn (hard drawn)
spring wire (ASTM A 227) since the load is static (Table 2.1)

A
From Table 2.1; for hard drawn wires diameter range is between S, = —
0.70 mm-12 mm d

The coefficients are: m=0.192, A= 1750 MPa to be used in eqgn.

S
Design criteria: 1) 7, <S_,, or n,=—2X2>1.0
Tmax
2) 4<C<12 . '
_f:’) max_ _ 9 .
3) check for buckling p L, — (related figure)

4) not amust, but checkif 7y g < S,

5) critical frequency



For a spring to be designed, the parameters:
d=? D=? N;=7? L;=7? should be determined.

1) Since none of the design parameters are known, we have to start
by assuming a wire diameter d between 0.7-12 mm
Let d=4mmand C=8 —— D=Cxd =32 mm

8FD K. =1+%=1.0625

Thus :
Tmax — I‘<S

7Zd3
F=750N
. =1.0625 ©) (7503(32)
T4 D =32 mm
T max =1014.6 MPa d=4mm
S, = 1705122 —1341 MPa
(4)"
S,, =0.577(0.75%1341) =580 MPa
S
n =~ - 39 45710 FAILURE!

s . 10146

max



Re-size the wire diameter to reduce 7.,
Let d=5mmand C=8 ——> D=40 mm

K, =1+ % ~1.0625 > r,,, =1.0625°020(40)

S

= 649.4 MPa

7O

1750
Su = Toi; = 12848 MPa > S, = (0.577)0.75)1285) = 556 MPa
S
n,=—r= >0 _)85<1.0 FAILURE!
T 049.4
Re-size to d=5 mmand C=6 - D=30mm

K=1.0833, T,,, =496.5MPa, S =556MPa,

n,=556/496.5=1.12 >1.0 SAFE

Thus a spring material of ASTM A 227 with
d=5 mm and D= 30 mm satisfies the criteriaof 1and 2 (C=6)



To find out other parameters N, and L; we proceed as:

Given a deflection of 20 mm over a force range of 500 N - 750 N

_AF  750-500 250N

K — =125 N/mm or k=12500 N/m
Ay 20 20mm
Also 4
k = d 3G =12.5 N/mm
8D°N,
where
d =5mm
G =79.3x10° N/m? or G =79.3x10> N/mm?
D =30 mm

N, =7

a



So d‘G  (5)*(79.3)x10°
A 3

8D’k  8(30)° x12.5

N - 49562500

rounded to nearest quarter

= =18.356 coils N, =18.5colls
2700000
Lf ymax yi + yW
3) Check for buckling and L, L

Assuming squared and ground ends N, =2 — N, =N_ + N, =20.5 colls

L. =N, xd =20.5x5=102.5mm
y,,= 20 mm (given in problem)
Lf = Ls T Yetash T Ywork T Yinitial Y clasn= 0.15 XY= 0.15x20=3mm

L,=102.5+3+20+40=165.5mm F 500
yinitial =—= = 40 mm

L, =165.5mm kK125




3) Check for buckling

L, 1655 . Y e
Df = =5.52 > 4 — likely to buckle L
f
Ymex _ Yi+t VYo _40+20 _ 0.363
L, L, 165.5
MECHANICAL SPRINGS AL opid
j ;.- P fa ! Pt
: L -
& ,/'lr}d
= 06
>
= Buckling
§ - zone
o 04
o
5 =
g 02 =
S oy
[~}
£ 0
e 0 2 4 6 8 10

Ratio of free length to mean diameter, I/D

» If one end of spring is rounded (curve A) it buckles,

B
A

38 L, /D

FIGURE 104 Curves
show when buckling of com-
pression coil springs may
occur. Both curves are for
springs having squared and
ground ends. For curve A4
‘one end of the spring is
compressed against a flat
surface, the other against a
rounded surface. For curve
B both ends of the spring
are compressed against flat
and parallel surfaces.

»but if both ends are compressed between flat and parallel surfaces

(curve B) it does not buckle although near the curve B.



So these springs should be compressed between flat and parallel surfaces.

If not compressed between parallel-flat surfaces then some kind of rod or
hole mechanism should be used to fix the springs.

If you use rod inside the spring: d <D, -0.1xd

<(30-5)-0.1x5<24.5mm

rod nax

rod ax

If you fit the spring in a hole: Dy, =D, +0.1xd
>(30+5)+0.1x5>35.5 mm

hol.,



4)

?

= 8FD
<s, S, =556 MPa K

soI|

requires the force

SO|Id

SO|Id =K x (Lf R Ls)
=12.5(165.5—-102.5)= 787.5 N
£ =1.0833x 52 187:9%30 _ 551 38 MPa
T X (5)
Nsolig = i
solid
556

=1.07>1.0 OK! no failure
521.38 —




5) critical frequency f _1 kg Hz (cycle/sec)
W

n 2 A
1Kk d‘G
f =—_ [— Hz(cycle/sec - =12.
T2 m, (cy ) k SD°N. 12.5N/mm

2 3
m, = Ax L><p:7[(5) ><(7z><30><20.5)><(109 m 3jx7800k—%
mm m

m, =0.296 kg

f _1\/12500 N /m

; =102 Hz (cycle /sec)
2\ 0.296 kg

102

fn
Frorce < 15" 15 <7 Hz(cycle/sec) it dynamic force is applied




SOLUTION:

ASTM A 227 hard-drawn wire with

d=5mm
D =30 mm
C=6

D.=25mm N, =20.5 coils squared and ground ends.
D,=35mm L, =165.5mm flat and parallel ends.



TO BE CONTINUED



