ME 308 MACHINE ELEMENTS II

ROLLING CONTACT BEARINGS PART_2

BİLYALI YATAKLAR

MAKARALI YATAKLAR

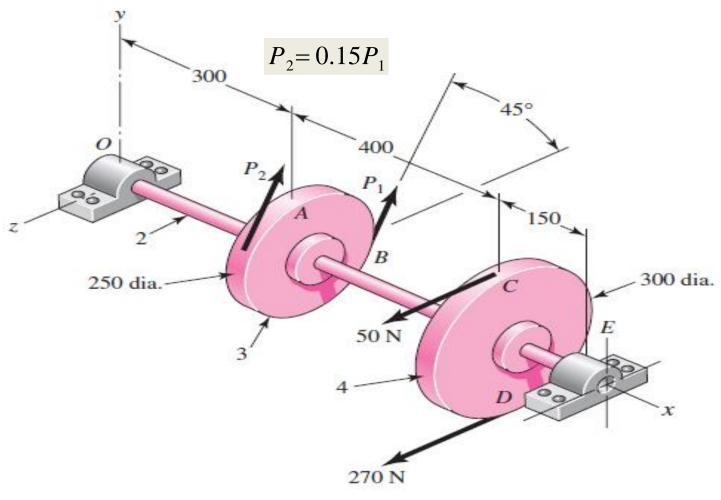
.

••

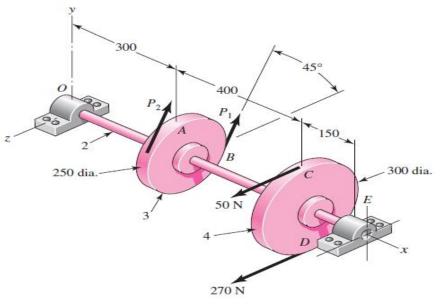
2

2

Yatak tipi	F.	* *	$\frac{F_{\theta}}{F_{t}} > 0$			Yatak tipi	$\frac{F_{e}}{F_{e}}$	2+	$\frac{F_{e}}{F_{e}}$	>*	
	x	r	X	Y			X	Y	x	Y	
Tek siralı bilyalı yataklar	100	1835 3				Makaralı oynak yataklar s	1.0	18	10 - E 10 - E		
160, 60 62, 63, 64 serileri .	-			 		23944 239/670 239/710 239/950	1	3,7 4	0,67		0,18 0,17
F. = 0.025	1			2	0,22	23024 C - 23068 CA 23072 CA - 230/500 CA	I	2,9	0,67	4,4	p ,23
°= 0,04	12	1	1	1,8	0,24	22 martine and a second		1	5	101.000	0,21
= 0,07 = 0,13	3	0	0,56	1,5	0,27	240240 - 24080 CA 24084CA - 240/500CA	1	2,3	0,67	3,5 3,6	0,29 0,28
- 0,25 - 0,5	5				0.37 0.44	23120C - 23128C 23130C - 231/500 CA	1	1.			0,28
Bilyah oynak yataklar						24122 C 24128C 24130 C- 24172 CA	1	1,9	0,67	2.9.	0,35
135, 126, 127, 108, 129	1	1.8	0,65	2,8	0,34	24176 CA - 241/500 CA		1,9	0,0 r		0,35
1200 - 1203		2			0,31	22205 C - 22207 C	9	2,1		3,1	
04 05	1	2,3		3,6	0,27	05 C - 09 C 10 C - 20 C	1	2,5			0,27
06- 07	3	27		14.2	0,23	22 C - 44 C		2,6	101		0,23 j 0,26 j
08 - 09	1		0,65			48 - 64	2	2.4		Comparison	0,28
10 - 12 13 - 22	. 1	3.4		12/01/01	0,19	23210 - 292000		1.1.1	1		
24 - 30		3.3			0,2	23218 C - 23220 C 22 C - 64 CA	1	2,2		3,3	
2200 - 2204		1,3		2	p.5	21304 - 21305		2,8		4,2	
05 - 07		1,7		2,6	p.37	06 - 10		3 2		4,8	
08- 09	1	2	0,65	3,1	0,31	11 - 19	1	3,4			0,2
10-13					in the set	20 - 22		3,7		5,5	
21 - 22		2.4	1		0,26	22308 C - 22310 C		1,8		2,7	1 37
		2,3			0,25	11C- 15C		1 4		z,9	
1300- 1303		3,8			0,34	16 C- 40 C	1.	2 .	67		3,34
04 05	1	2,2	7,65		0,29	44 56	-	1,9		2,9	
05 - 09		2,5			0,25	-					
10- 22	J	2,8	-	See.	0,23	Vateklar			and a		· 11
- 2301 2302- 2304	. 1	1			0,63		1		· .		
05- 10	1	1,2			0,52	30203 - 30204	•			,75	
		4.44	Constanting of	6.3	0,43	1 WW 1 VW 1	1	0 4	o,≼ Ľ	6 1	1.37


d	17-40	a un	1				SKI					. *	1	d	17-4	0 mm
	1									-		· .			÷ .	
	· · ·	10			· . · .					1		34			2.00	4
	-				2								•	-		$\cdot \cdot \cdot$
1		÷.		}+-₿-	1				•	-	1	1	¥.			•
a	÷		Г		r	•	*25		۰.	÷					1	
20	2		1	T					1.			%-		£* .	-	
								đ.							2	12
	.:		1	11		-**								÷. •		.11
				11	111							•				
			· Ď	Ď,	0.6											
			· · 1	1 .	111	•	4				-			100		
	72					2 - A	5.) (2)									10
					╉┯┹╶╽		y - 1		11							4
			1		1	1			100							
		•	. L		3			2								8 25 Jul
		: • · ·	25								· ·					÷
	•	· 19.										lent bea				
						X.9			•	•	dynam P - YF	+YF	sta Pa		+0,5 F.	
-			i:			· · · ·										
-									•	4	When	Po <f,< th=""><th>ise Po=</th><th>= F.</th><th></th><th></th></f,<>	ise Po=	= F.		
	ndary		Basic lo	ad ratings	Limiting	speeds	Masa	Designa	itions		When Calcul	Po <f, l<="" td=""><td>ise Po=</td><td>= F₁</td><td></td><td></td></f,>	ise Po=	= F ₁		
	ndary		Basic lo dynamic	ad ratings static	Lubrica	tion	Masa	Detigna	itions		When	Po <f, l<="" th=""><th>ise Po= ctors</th><th>= F.,</th><th>•</th><th></th></f,>	ise Po= ctors	= F.,	•	
			Basic lo dynamic C	ed ratings static Co	Limiting Lubrica grease	tion	Mesa .	Designa	itions		When Calcul	Po <f, l<="" th=""><th>ise Po= ctors</th><th></th><th>FyF, X</th><th></th></f,>	ise Po= ctors		FyF, X	
dime d	Insions		dynamic C	static Co	Lubrica grease	tion pil .		Designa	itions	· · · · ·	Calcul dynam	Po <f, u<br="">istian familie</f,>	ise Po= ctors	= F, 'F,≦e	` F₂/F,	
dime	Insions		dynamic C	static	Lubrica	tion pil .	Masa kg	Designa	itions		Calcul dynam	Po <f, u<br="">istian familie</f,>	ise Po= ctors	= F, 'F,≦e	` F₂/F,	
dime d	D 25	8 - 5	dynamic C N (1 N = 1 320	static C ₀ 0,225 lbf) 915	Lubrica grease r/min 24 000	tion oil -	kg 0,0082	61803	itlons		When Catcul dynam Fa/Co	Po <f, l<br="">stion fa tic 0,22</f,>	ise Po= ctors	= F, 'F,≦e	F.F. X 0,56	>e Y 2
dime d mm	26 35	8 5 8	dynamic C N (1 N = 1 320 4 650	static C ₀ 0,225 lbf) 915 2 800	r/min 24 000	tion oil 30 000 24 000	kg 0,0082 0,032	61803	itlotts		When Calcul dynam Fa/Co	Po < F, L stion familic e 0,22 0,24	ise Po= ctors	= F, 'F,≦e	F.F. X 0,56 0,56	>e Y 2 1,8
dime d mm	26 35 35	B -	dynamic C N (1 N = 1 320 4 650 4 650	static C ₀ 0,225 lbf) 915 2 800 2 800	Lubrica grease r/min 24 000 19 000	tion bil 30 000 24 000 24 000	kg 0,0082 0,032 0,039		itlotts		When Calcul dynam Fa/Co	Po <f, l<br="">ation fa iic 0,22 0,24 0,27</f,>	ise Po= ctors	= F, 'F,≦e	F./F, X 0,56 0,56	>e Y 1,8 1,6
dime d mm	26 35 35 40 47	B 5 8 10 12 14	dynamic C N (1 N = 1 320 4 850 4 850 7 350 10 400	static C ₀ 0.225 lbf) 915 2 800 2 800 4 500 8 550	Lubrica grease r/min 24 000 19 000 19 000 17 000 16 000	tion bil - 30 000 24 000 20 000 20 000 19 000	kg 0,0082 0,032 0,039 0,065 0,12	61803 16003 6003 6203 6303	itions		When Catcul dynam F _a /Co 0,025 0,04 0,07 0,13 0,25	Po <f, l<br="">stion fs. nic 0,22 0,24 0,27 0,31 0,37</f,>	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0 0	F.JF, X 0,56 0,56 0,56 0,56 0,56	>e Y 1,8 1,6 1,4 1,2
dime d mm	26 35 35 40	B 5 8 10 12	dynamic C N (1 N = 1 320 4 850 4 850 7 350	static C ₀ 0.225 lbt) 915 2 600 2 600 4 500	Lubrica grease r/min 24 000 19 000 19 000 17 000	tion bil 30 000 24 000 24 000 20 000	kg 0,0082 0,032 0,039 0,065	61803 16003 6003 6203	itions		When Calcul dynam Fa/Co 0,025 0,04 0,07 0,13	Po <f, l<br="">skian fs hic 0,22 0,24 0,27 0,31</f,>	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0	F ₂ /F ₇ X 0,56 0,56 0,56	>∉ Y 1,8 1,6 1,4
dime d mm	26 35 35 40 47 62 32	B 5 8 10 12 14	dynamic C N (1 N = 1 320 4 850 4 850 7 350 10 400 17 600 2 040-	static C ₀ 0,225 lb1) 915 2 800 2 800 4 500 6 550 11 800 1 400	Lubrica grease r/min 24 000 19 000 17 000 16 000 12 000 19 000	tion bil 30 000 24 000 24 000 20 000 19 000 15 000 24 000	kg 0,0082 0,032 0,039 0,085 0,12 0,27 0,018	61803 16003 5003 5203 5303 6403 61804	itlons		When Catcul dynam F _a /Co 0,025 0,04 0,07 0,13 0,25	Po <f, l<br="">stion fs. nic 0,22 0,24 0,27 0,31 0,37</f,>	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0 0	F.JF, X 0,56 0,56 0,56 0,56 0,56	>e Y 1,8 1,6 1,4 1,2
dime d mm t7	26 35 35 40 47 62 32 42	B 5 8 10 12 14 17 , 7 8	dynamic C N (1 N = 1 320 4 850 4 850 7 350 10 400 17 600 2 040- 5 400	static C ₀ 0,225 lbf) 915 2 800 2 800 4 500 6 550 11 800 1 400 3 400	Lubrica grease r/min 24 000 19 000 17 000 16 000 12 000 19 000 16 000	tion bil 30 000 24 000 20 000 19 000 15 000 22 000 24 000 22 000	kg 0,0082 0,032 0,039 0,085 0,12 0,27 0,018 0,050	61803 16003 5003 5203 5303 6403 61804 16004	itlons		When Catcul dynam F _a /Co 0,025 0,04 0,07 0,13 0,25	Po <f, l<br="">stion fs. nic 0,22 0,24 0,27 0,31 0,37</f,>	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0 0	F.JF, X 0,56 0,56 0,56 0,56 0,56	>e Y 1,8 1,6 1,4 1,2
dime d mm t7	26 35 35 40 47 62 32 42 42	B 5 8 10 12 14 17 7 8 12	dynamic C N (1 N = 1 320 4 850 4 850 7 350 10 400 17 600 2 040- 5 400 7 200	static C ₀ 0,225 lbf) 915 2 800 2 800 4 500 8 550 11 800 1 400 4 500	Lubrica grease r/min 24 000 19 000 17 000 16 000 12 000 19 000 16 000 17 000	tion bil 30 000 24 000 24 000 20 000 15 000 15 000 22 000 22 000 20 000	kg 0,0082 0,032 0,039 0,085 0,12 0,27 0,018 0,050 0,050 0,065	61603 16003 6003 6203 5303 6403 61804 16004 6004	itlons		When Catcul dynam F _a /Co 0,025 0,04 0,07 0,13 0,25	Po < F, ∟ stion fs. iic 0,22 0,24 0,27 0,31 0,37 0,44	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0 0	F.JF, X 0,56 0,56 0,56 0,56 0,56	>e Y 1,8 1,6 1,4 1,2
dime d mm t7	26 35 35 40 47 62 32 42 42 42 47	B 5 8 10 12 14 17 7 8 12 14	dynamic C 1 320 4 850 4 850 7 350 10 400 17 600 2 040- 5 400 7 200 9 800	static C ₀ 0.225 lbf) 915 2 600 2 600 4 500 6 550 11 600 1 400 4 500 6 200	Lubrica grease r/min 24 000 19 000 17 000 16 000 12 000 19 000 16 000 17 000 15 000	tion bil - 30 000 24 000 24 000 20 000 15 000 22 000 22 000 22 000 20 000 16 000	kg 0,0082, 0,032 0,039 0,085 0,12 0,27 0,018 0,050 0,065 0,11	61803 16003 5003 6203 5303 6403 61804 16004 6004 6004	illoits		When Catcul dynam F _a /Co 0,025 0,04 0,07 0,13 0,25	Po <f, l<br="">stion fs. nic 0,22 0,24 0,27 0,31 0,37</f,>	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0 0	F.JF, X 0,56 0,56 0,56 0,56 0,56	>e Y 1,8 1,6 1,4 1,2
dime d mm t7	26 35 35 40 47 62 32 42 42	B 5 8 10 12 14 17 7 8 12	dynamic C N (1 N = 1 320 4 850 4 850 7 350 10 400 17 600 2 040- 5 400 7 200	static C ₀ 0,225 lbf) 915 2 800 2 800 4 500 8 550 11 800 1 400 4 500	Lubrica grease r/min 24 000 19 000 17 000 16 000 12 000 19 000 16 000 17 000	tion bil 30 000 24 000 24 000 20 000 15 000 15 000 22 000 22 000 20 000	kg 0,0082 0,032 0,039 0,085 0,12 0,27 0,018 0,050 0,050 0,065	61603 16003 6003 6203 5303 6403 61804 16004 6004	itlotts		When Catcul dynam F _a /Co 0,025 0,04 0,07 0,13 0,25	Po < F, ∟ stion fs. iic 0,22 0,24 0,27 0,31 0,37 0,44	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0 0	F.JF, X 0,56 0,56 0,56 0,56 0,56	>e Y 1,8 1,6 1,4 1,2
dime d t7 20	26 35 35 40 47 62 32 42 42 42 47 52 72	B 5 8 10 12 14 17 7 8 12 14 15 19	dynamic C N (1 N = 1 320 4 850 4 850 7 350 10 400 17 600 2 040- 5 400 7 200 9 800 12 200 23 600	static C ₀ 0,225 lb1) 915 2 800 2 800 2 800 4 500 6 550 11 800 1 400 3 400 4 500 6 200 7 800 16 500	Lubrica grease r/min 24 000 19 000 17 000 17 000 16 000 17 000 16 000 17 000 15 000 13 000 10 000	tion pil - 30 000 24 000 24 000 20 000 15 000 15 000 22 000 22 000 20 000 16 000 15 000	kg 0,0082 0,032 0,039 0,065 0,12 0,27 0,018 0,050 0,065 0,11 0,14 0,40				When Catcul dynam F _a /Co 0,025 0,04 0,07 0,13 0,25	Po < F, ∟ stion fs. iic 0,22 0,24 0,27 0,31 0,37 0,44	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0 0	F.JF, X 0,56 0,56 0,56 0,56 0,56	>e Y 1,8 1,6 1,4 1,2
dime d mm t7	26 35 35 40 47 62 32 42 42 42 47 52 72 37	B 5 8 10 12 14 17 7 8 12 14 15 19 7	dynamic C N (1 N = 1 320 4 850 4 850 7 350 10 400 17 600 2 040- 5 400 7 200 9 800 12 200 23 600 2 280	static C ₀ 0,225 lbf) 915 2 800 2 800 4 500 6 550 11 800 1 400 4 500 6 200 7 800 16 500 1 700	Lubrica grease r/min 24 000 19 000 17 000 17 000 16 000 17 000 15 000 15 000 13 000 10 000 17 000	tion bil - 30 000 24 000 24 000 20 000 19 000 15 000 22 000 24 000 22 000 16 000 16 000 13 000 20 000	kg 0,0082 0,032 0,039 0,085 0,12 0,27 0,018 0,050 0,065 0,11 0,14 0,40 0,022	61803 16003 6003 6203 5303 6403 6403 61804 16004 6004 6204 6304 6304 6404 51805	itions	· · · · · · · · · · · · · · · · · · ·	When Catcul dynam F _a /Co 0,025 0,04 0,07 0,13 0,25	Po < F, ∟ stion fs. iic 0,22 0,24 0,27 0,31 0,37 0,44	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0 0	F.JF, X 0,56 0,56 0,56 0,56 0,56	>e Y 1,8 1,6 1,4 1,2
dime d t7 20	25 35 35 40 47 52 37 42 42 47 52 72 37 47 47	B 5 8 10 12 14 17 7 8 12 14 15 19	dynamic C N (1 N = 1 320 4 850 4 850 7 350 10 400 17 600 2 040- 5 400 7 200 9 800 12 200 23 600	static C ₀ 915 2 800 2 800 4 500 8 550 11 800 1 400 4 500 6 200 7 800 16 500 1 700 4 000 5 600	Lubrica grease r/min 24 000 19 000 17 000 17 000 16 000 17 000 15 000 15 000 13 000 17 000 14 000	tion pil - 30 000 24 000 24 000 20 000 15 000 15 000 22 000 22 000 20 000 16 000 15 000	kg 0,0082 0,032 0,039 0,065 0,12 0,27 0,018 0,050 0,065 0,11 0,14 0,40	61803 16003 5003 5203 5303 6403 61804 16004 6204 6304 6304 6404 51805 16005 6005 6005		· · · · · · · · · · · · · · · · · · ·	When Catcul dynam F _a /Co 0,025 0,04 0,07 0,13 0,25	Po < F, ∟ stion fs. iic 0,22 0,24 0,27 0,31 0,37 0,44	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0 0	F.JF, X 0,56 0,56 0,56 0,56 0,56	>e Y 1,8 1,6 1,4 1,2
dime d t7 20	26 35 35 40 47 62 32 42 42 42 47 52 72 37 47	B 5 8 10 12 14 17 7 8 12 14 15 19 7 8	dynamic C N (1 N = 1 320 4 850 4 850 7 350 10 400 17 600 2 040- 5 400 7 200 9 800 12 200 23 600 2 280 5 850	static C ₀ 0,225 lbf) 915 2 800 2 800 4 500 6 550 11 800 1 400 4 500 6 200 7 800 16 500 1 700 4 000	Lubrica grease r/min 24 000 19 000 17 000 17 000 16 000 17 000 15 000 15 000 13 000 10 000 17 000	tion bil - 30 000 24 000 24 000 20 000 15 000 15 000 22 000 20 000 16 000 16 000 16 000 17 000	kg 0,0082 0,032 0,039 0,085 0,12 0,27 0,018 0,050 0,065 0,11 0,14 0,40 0,022 0,060	61803 16003 6003 6203 5303 6403 6403 61804 16004 6004 6204 6304 6304 6404 51805		· · · · · · · · · · · · · · · · · · ·	When Catcul dynam F _a /Co 0,025 0,04 0,07 0,13 0,25	Po < F, ∟ stion fs. iic 0,22 0,24 0,27 0,31 0,37 0,44	ise Po= ctons Fai X	= F, F,≦¢ Y 0 0 0 0	F.JF, X 0,56 0,56 0,56 0,56 0,56	>e Y 1,8 1,6 1,4 1,2

		عملاده	t Ba	ul Ba	early	Ś	dynam P = XF When	++Y	F. ¹ , use Po	static Po = 0 = Fr	0,5 Fr + 0,3	28 F
Boundary dimensions d D B	Basic los retinge dynamic C		Lubricat	i ependa ilon oll	Maas	Designation	Catcul dynam e	ic	tactors F,≦e Y	Fa/Fr X	98 Y	
n i	N (1 N ⇒	0,225 lb()	r/min '		kg		_		1	·		
10 30 9	3 800	2 120	19 000	28 000	0,031	7200 B	1,14	1	0	0,35	0,57	
12 32 10	5 400	3 050	17 000	24 000	0,045	7201 8						
01632385 11	6 200	3 650	16 000	22 000	0,048	7202 B						
42 13	9 000	5 300	14 000	19 000	0,090	7302 B						
1710/40 . 1.12	- 7 650	4 850	14 000	19 000	0,070	7203 8					,	
47 14	11 400	7 100	12 000	17 000	0,12	7303 B					14	
47 14	10 200	6 400	11 000	16 000	0,11	7204 B						
52 15	13 400	8 150	10 000	15 000	0,15	7304 B						
25 11 52 15	11 400	7 650	9 500	14 000	0.14	7205 B						
28 1 52 15 62 17	19 000	12 200	8 500	12 000	0,24	7305 B			-14		3	
30 62 16	15 600	11 000	8 500	- 12 000	0,21	7206 B	3					
72 19	24 000	16 600	7 500	10 000	0,36	7306 B						
136 72 17	20 800	15 000	7 500	10 000	0,30	7207 B					.	
60 21	28 000	28 000	7 000	9 500	0,49	7587 8						


			500 m	ing at pm for ours, L10			$\begin{array}{c} D \\ D_{h} \\ d_{a} \\ d_{a} \\ \vdots \\ \vdots \\ d \\ d \end{array}$	R
Bore	Outside diameter Di	Width T	One row radial lb daN	Thrust Ib deN	Fac- tor K	Eff. load center at	$\frac{\int_{a_{b}}^{d_{b}}}{\int_{a_{a}}^{D_{a}}}$ Part 1 Cone	oumbers Cap
	hch1.2595	0.3940	435	301	1.44	-0.12	A2037	A2126
	ma 31,991	10,008	192	134		- 3,0		ALING
10.4724		0.3940	435	301	1.44	- 0.12	A2047	A2126
\$12,000		10,008	192	J34 -		- 3,0		
0.4992	1.3775	0.4330	500	387	1.29	-0.10	A4049	A4138
12,680	34,988	10,998	222	172	3	-2,5		
0.5000	1.3775	0.4330	500	387	1.29	24. SUB-0496	A4050	A4138
12,700	34,988	10,998 .	222	172		-2,5		
0.5000	1.5000	0.5313	760	358	2.12	-0.20	00050	00150
12,700	38,100	13,495	338	159		- 5,1		00140
\$6.5906	1.3775	0.4330	500	387	1.29	-0.10	A4059	A4138
115,000	34,988	10,998	222	172		-2,5		71130
0.6250	1.3775	0.4330	575	314	1.83	-0.13	L21549	L21511
15,875	\$ 34,988	10,998	256	140		3,3		BA64.773
0.6250	1.5745	0.4730	530	480	1 2 1	0.06	A Coch	and the second second

Example 3.2 (11.3)

The figure is a schematic drawing of a countershaft that supports two V-belt pulleys. The countershaft runs at shaft speed of 1100 rpm and the bearings are to have a life of 12 khrs, R= 99 % reliability using an application factor of unity. The belt tension on the loose side of pulley A is 15 % of the tension on the tight side. An analysis of this problem gave shaft forces at B and D of $F_B = -253j-253kN$ and $F_D = -320kN$, with the belt pulls assumed to be parallel.

Based on bending deflection, a shaft diameter of 35 mm has been selected at both bearing and E. points O suitable Select a ball bearing to be used at both bearings are to be of the same size.

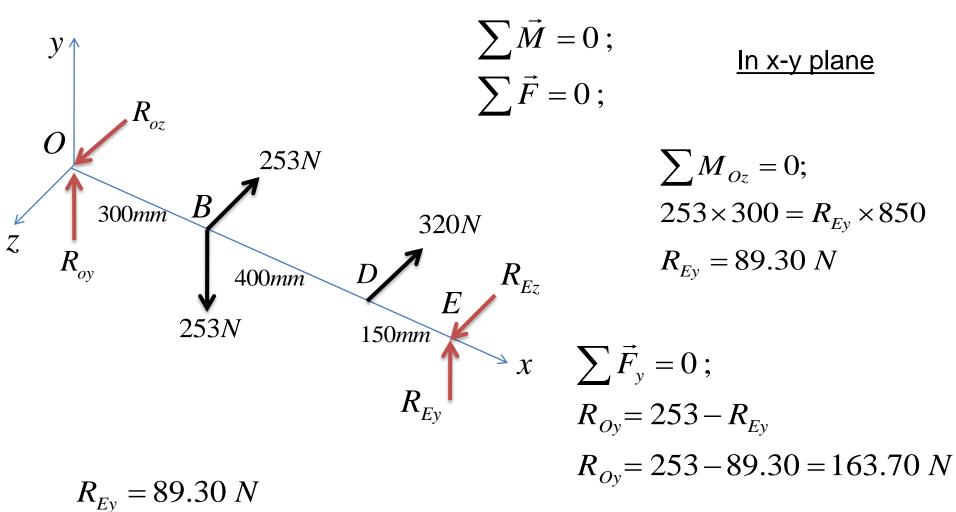
Use torque balance of the shaft to determine the value of P_1 and P_2 and reaction force on bearings

$$\sum M_{o_x} = 0;$$

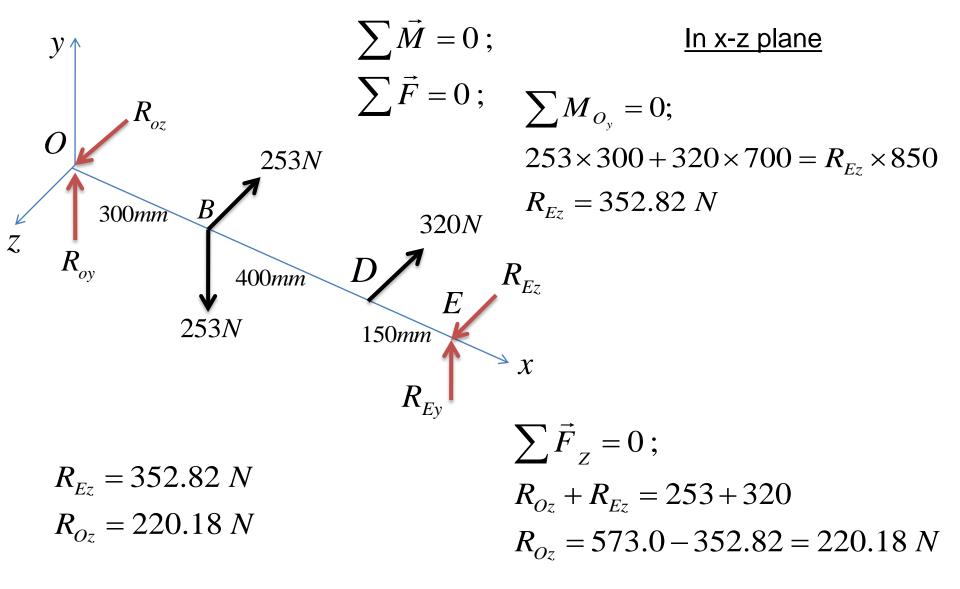
0.85 × P × $\frac{250}{2} = 220 \times \frac{300}{2}$
P = 310.59 N

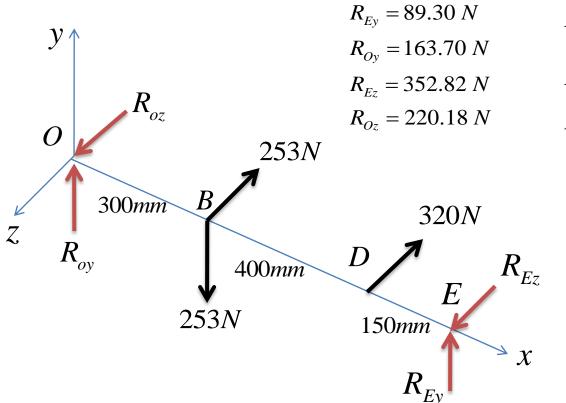
Reaction force on Pulley C -D

Reaction force on Pulley A -B


 $R_B = 0.15P + P = 1.15P$ $R_B = 1.15 \times P = 1.15 \times 310.59 = 357.18 N$

 $F_{D_z} = 270 + 50 = 320 N$ $\vec{F}_D = -320 \vec{k} N$


$$F_{B_z} = \cos 45 \times 357.18 = -252.56 N$$


$$F_{B_y} = \sin 45 \times 357.18 = -252.56 N$$

$$\vec{F}_B = -253 \vec{j} - 253 \vec{k} N$$

 $R_{Ey} = 89.30 N$ $R_{Oy} = 163.70 N$

$$R_{o} = \sqrt{(R_{oy})^{2} + (R_{oz})^{2}}$$

$$R_{o} = \sqrt{(163.70)^{2} + (220.18)^{2}}$$

$$R_{o} = 274.36 N$$

$$R_{E} = \sqrt{(R_{Ey})^{2} + (R_{Ez})^{2}}$$

$$R_{E} = \sqrt{(89.30)^{2} + (352.82)^{2}}$$

$$R_{E} = 363.94 N$$

The shaft forces at B and D are given to be:

 $\vec{F}_{B} = -253\vec{j} - 253\vec{k} N$ $\vec{F}_{D} = -320\vec{k} N$ af = 1.0 n = 1100 rpm $L_{10} = 12 khrs (required)$ $R_{23.03.2022}$

Since there is no axial load but only radial load $F_e = V \cdot F_r$ where V = 1.0 and Also af = 1.0 $F_{e_o} = R_o = 274.36 N$ $F_{e_E} = R_E = 363.94 N$

0

For ball bearings

$$R = \exp\left[-\left(\frac{L}{6.84 \times L_{10}}\right)^{1.17}\right] \qquad \ln\left(\frac{1}{R}\right) = +\left(\frac{L}{6.84 \times L_{10}}\right)^{1.17}$$

$$L_{10} = \frac{L_{reg}}{6.84 \times \left(\ln\frac{1}{R}\right)^{\frac{1}{1.17}}} = \frac{12000}{6.84 \times \left(\ln\frac{1}{0.99}\right)^{\frac{1}{1.17}}} \qquad L_{hrs_{o}} = \left(\frac{C}{F_{eqv}}\right)^{a} \times \frac{16667}{n_{rpm}}$$

$$L_{10} = 89467 \ hrs \quad required \qquad L_{hrs_{o}} = \left(\frac{L_{hrs} \times n_{rpm}}{16667}\right)^{\frac{1}{a}} \times F_{eqv}$$

$$C_{req_{o}} = \left(\frac{89467 \times 1100}{16667}\right)^{\frac{1}{3}} \times 274.36 = 4959 \ N$$

$$C_{req_{E}} = \left(\frac{89467 \times 1100}{16667}\right)^{\frac{1}{3}} \times 363.94 = 6579 \ N$$

$$23.03.2022$$

11

-			ių.		•• • • •		• :					dyn P ≈	iivalent amic XF, + Y en Po<	F.	sta Po	tic = 0.6 F	, + 0,5 F,	•
		dary hsiona	4		ad ratings static	Limiting Lubrica grease		Masa	Design	ations	ана 1 1		culation amic	facts		F,≦\$	F _a /F	,>e
d		D	8 -	C in	Co				* .	•	14	• F _a ß	Co e		x	Y	×	Y
m	m			N (1 N=	0.225 lbf)	r/min		kg					· · · ·					
17	7	26	5	1 320	915 -	24 000 .	30 000	0,0082	61803			0.0	25 0,	22	1	0	0,56	2
		35	8	4 850	2 800	19 000	24 000	0,032	16003			0,0			1	0	0,56	
		35	10	4 850	2 600	19 000	24 000	0,039	5003			0,0		27	1	0	0.56	.1,6
		40	12	7 350	4 500	17 000	20 000	0,065	6203			0.13		91 ·	1	0	0,56	1,4
		47	14	10 400	6 550	16 000	19 000	0,12	6303			0,2			1	0	0.56	1.2
		62	17 .	17 600	11 800	12 000	15 000	0,27	6403			0,5	0,-	44	1	0	0,56	1 -
21	D	32	7	2 040 -	1 400	19 000	24 000	0.018	61804			•		•				•
		42	8	5.400	3 400	16 000	22 000	0,050	16004									
		42	12	7 200	4 500	17 000	20 000	0,065	6004						25			
		47	14	9 800	6 200	15 000	18 000	0,11	6204									
		52.	15	12 200	7 800	13 000	16 000	0,14	6304									
		72	19	23 600	16 600	10 000	13 000	0,40	6404		135						10	
2	5	37	7	2 280	1 700	17 000	20 000	0,022	61805		\$					-		
		47-	8	5 850	4 000	14 000	17 000	0,060	16005									
10		47	12	8 650	5 600	15 000	18 000	D,CEO	8005									
	3	52	15	10 800	6 950	12 000	15 000	0,13	6205									
		62	17	17 360	11 400	11 000	14 000	0,23	6305		-					12		
		00	21	27 500	19 600	9 000	11 000	0,53	6405							8		
30	r -	42	7	2 280	1 800	15 000	18 000	0,026	61806									
			9 .	6 650	5 850	12 000	15 000	0,085	15006			2000						
		55	13	10 200	6 800	12 000	15 000	0,12	6005			*					S. 3.	
		62 72	16	15 000	10 000	10 000	13 000	0.20	6206		Sec. 1							
	50	72	19	21 800	14 600	9 000	17 000	0,35	\$306		*							
		90	23	33 500	24 000	8 500	10 000	0,74	5408									-
25	i	A7 ·	7	2 360	2 000	13 000	16 000	0,030	61807					1			19	
		62	9 (9 500	6 950	10 000	13 000	0.11	18007.				•	92				23
			14	12 200	8 500	10 000	13 000	0,16	6001								· · · · ·	
		72	17	19 000	13 700	9 000	11 000	0,29	8207									
		80	21	25 500	18 000	8 500	10 000	0.48	6307		- 54		100	-35		3.6		37
		100	25	42 500	31 000	7 000	8 500	0,95	6407			÷						.*
40	2.2	52	7	2.450	2 200	11 000	14 000	0.034	61808		1	31. ·	1			•84	1	20

.

. 1

: 1

-

.

<u>Deep Groove (single row) ball bearings</u> (cheap, most widely used in light applications)

Choose SKF 6007 (d= 35 mm)
$$L_{hrs} = \left(\frac{C}{F_{eqv}}\right)^a \times \frac{16667}{n_{rpm}}$$

C = 12200 N

$$C_o = 8500 \ N \rightarrow L_{10hrs} = \left(\frac{12200}{274.36}\right)^3 \frac{16667}{1100} = 1,332,238 \ hrs >>> 89467 \ hrs$$

too much life

Choose SKF 61807

C = 2360N

$$C_o = 2000N \rightarrow L_{hrs} = \left(\frac{2360}{274.36}\right)^3 \frac{16667}{1100} = 9643hrs < 89467$$

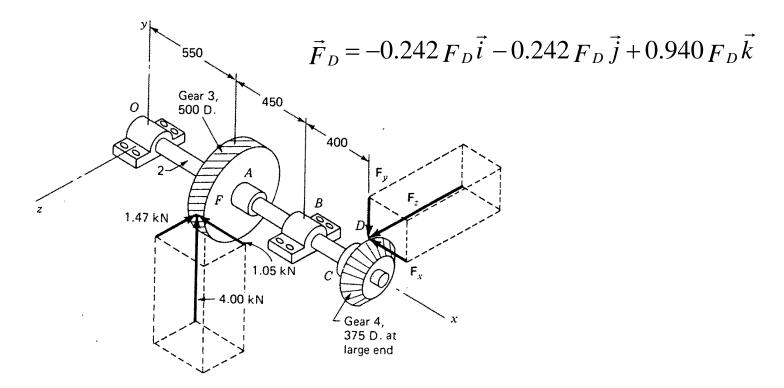
not satisfactory

Same bearing (SKF 16007) for point E provides a life of

$$L_{hrs}_{E} = \left(\frac{9500}{363.94}\right)^{3} \frac{16667}{1100} = 269492 \ hrs > 89467 \ hrs$$

satisfactory

If we intend to use <u>angular contact ball bearing</u> (d=35mm) the option with smallest C value is SKF 7207 B

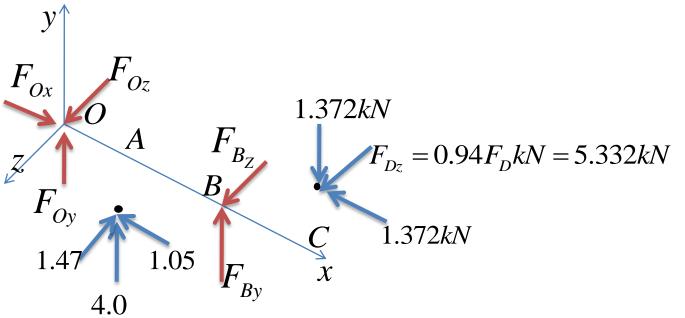

C = 20800N

$$C_o = 15000N \rightarrow L_{hrs}_E = \left(\frac{20800}{364}\right)^3 \frac{16667}{1100} = 2985420hrs >>> 89467$$
 too much life

If we intend to use straight roller bearings (F_a =0) The option with smallest C value is SKF NU1007 C = 19000N

$$C_o = 11600N \rightarrow L_{hrs} = \left(\frac{19000}{364}\right)^3 \frac{16667}{1100} \cong 2275500hrs >>> 89467hrs$$
 too much life

<u>Thus better to use SKF 16007 single row deep groove ball bearing which</u> <u>satisfies a life of</u> <u>269492 hrs for bearing E &</u> <u>629032 hrs for bearing O (both in excess of 89467 hrs)</u> Example 3.3 (11.7 Ex for angular contact ball bearing and straight roller bearing



An angular-contact ball bearing with shallow angle is to be housed at O to take both radial and thrust loads.

The bearing at B is to be a straight roller bearing.

a) Determine the required ratings of each bearing based on an L_{10} life of 36 khrs at a shaft speed of 900 rpm.

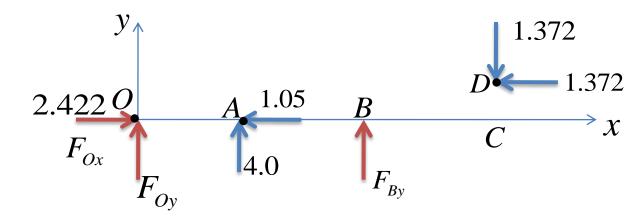
b) Select suitable bearings for both points. If the bearing bores are 90 mm (or 75 mm) at O and 60 mm at B.

Use torque balance of the shaft to determine force ${\rm F}_{\rm D}$

$$\sum M_{o_x} = 0;$$

 $4 \times \frac{500}{2} = 0.94 F_D \times \frac{375}{2}$
 $F_D = 5.673 \, kN$

$$\vec{F}_{D} = -0.242 F_{D} \vec{i} - 0.242 F_{D} \vec{j} + 0.940 F_{D} \vec{k}$$


$$F_{Dx} = -0.242 F_{D} = 1.372 kN$$

$$F_{Dy} = 1.372 kN$$

$$F_{Dz} = 5.332 kN$$

$$\sum F_{x} = 0 \rightarrow F_{0x} = 1.05 + 1.372 = 2.422 kN$$

In x-y plane

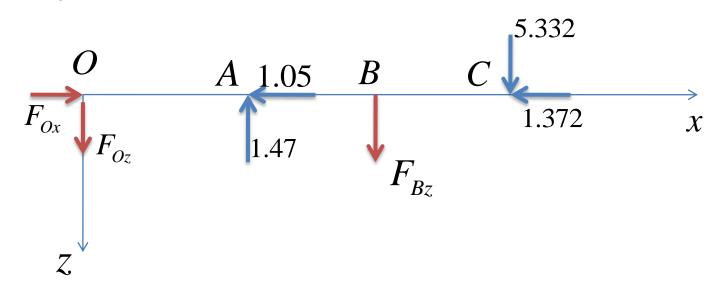
$$\sum M_{o_z} = 0;$$

$$4 \times 550 + F_{By} \times 1000 + \frac{375}{2} \times 1.372 = 1400 \times 1.372$$

$$F_{By} = -0.534 \ kN$$

$$\sum F_{By} = -0.534 \ kN$$

$$\sum F_{y} = 0;$$


$$F_{oy} + 4.0 + F_{By} - 1.372 = 0$$

$$F_{oy} = 1.372 - 4.0 - F_{By}$$

$$F_{oy} = 1.372 - 4.0 - (-0.534)$$

$$F_{oy} = -2.093kN$$

In x-z plane

$$\sum M_{O_y} = 0;$$

$$1.47 \times 550 + F_{Bz} \times 1000 - 1400 \times 5.332 = 0$$

$$F_{Bz} = -6.656 \ kN$$

$$\sum F_z = 0;$$

$$F_{Oz} - 1.47 + F_{Pz} + 5.332$$

$$\sum F_{z} = 0;$$

$$F_{Oz} - 1.47 + F_{Bz} + 5.332 = 0$$

$$F_{Oz} = 1.47 - F_{Bz} - 5.332$$

$$F_{Oz} = 2.794 kN$$

Thus axial and radial loads at bearings O and B are:

$$F_{a_0} = F_{Ox} = 2.422kN$$
$$F_{r_0} = \sqrt{F_{Oy}^2 + F_{Oz}^2} = 3.491kN$$

For angular contact ball bearing at point O with both radial and thrust (axial) load

$$F_{a_{B}} = 0$$

$$F_{r_{B}} = \sqrt{F_{By}^{2} + F_{Bz}^{2}} = 6.677 kN$$

For roller contact bearing at point B with only radial load and no thrust (axial) load

For commercial gearing af= 1.1-1.3 Thus we use af=1.2

a) For angular contact ball bearing at O

$$F_{a} = 2.422 \ kN$$

$$F_{r} = 3.491 \ kN, \quad \frac{F_{a}}{F_{r}} = 0.693 \ \text{and} \ e = 1.14 \quad \text{Thus} \quad \frac{F_{a}}{F_{r}} < e; \quad X = 1.0 \quad \text{from sheet for} \quad Y = 0.0 \quad \text{from sheet for} \quad Y$$

For straight roller bearings at B

$$F_{a} = 0 \rightarrow F_{e} = V \times F_{r} = 1 \times 6.677 \ kN = 6.677 \ kN$$

$$F_{eqv} = 1.2 \times F_{e} = 1.2 \times 6.677 \ kN = 8.012 \ kN$$

$$C_{req} = \left(\frac{36000 \times 900}{16667}\right)^{\frac{3}{10}} \times 8.012 = 77.686 \ kN = 77686 \ N$$

$$23.03.2022$$

6. 18		~			1 00	ull Be	3	P [´] = XF When	°,+Y Po <f< th=""><th>F. Fr use Po</th><th colspan="3">$P_0 = 0.5 F_r + 0.20$ $P_0 = F_r$</th></f<>	F. Fr use Po	$P_0 = 0.5 F_r + 0.20$ $P_0 = F_r$			
ない。	Boundary dimension d	• •	Basic los retings dynamic C		Lubricat		Maas	Designation	Catcul dynam e	lc	lactors /F,≦e Y	F _e /Fr X	98 Y	, ,
	mm .		N (1 N ⇒	0,225 lb()	r/min '		kg		_			1		
	0 30	' 9	3 800	2 120	19 000	28 000	0,031	7200 B	1,14	1	0	0,35	0,57	
	12 32	10	5 400	3 050	17 000	24 000	0,045	7201 8						
	16 34485	ee 11 -	6 200	3 650	16 000	22 000	0.048	7202 B				1		
	42	13	9 000	5 300	14 000	19 000	0,090	7302 B						
	7.440	1/12	7 650	4 850	14 000	19 000	0.070	7203 8					1	1997
4.6.	47	14	11 400	7 100	12 000	17 000	0,12	7303 🖻						1
	20 47		10 200	6 400	11 000	16 000	0,11	7204 B						1
	52	15	13 400	8 150	10 000	15 000	0,15	7304 B						
	25 11 52	. 15	11 400	7 650	9 500	14 000	0.14	7205 B						
16	62	15	19 000	12 200	8 500	12 000	0,24	7305 B			-14		33	5
	30 62	18	15 600	11 000	8 500	- 12 000	0,21	7208 B						
	72	19	24 000	18 600	7 500	10 000	0,36	7306 B						5
日本	86 72	17	20 800	15 000	7 500	10 000	0,30	7207 B						
虹梯	6 80	212	28 660	20 000	7 000	9 500	0,48	7307 B						3

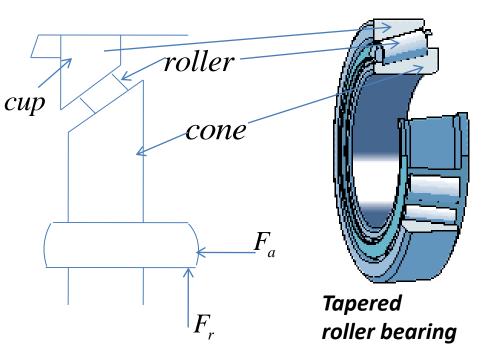
b) At point O (angular contact ball bearing)

SKF 7218 B with d= 90 mm and C= 81 500 N (>52 282 N) or SKF 7215 B with d= 75 mm and C= 55 000 N (>52 282 N) will suit the application.

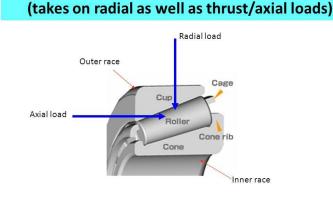
The life of the bearing will then be

$$L_{hrs} = \left(\frac{C}{F_{eqv}}\right)^{a} \times \frac{16667}{n_{rpm}} = \left(\frac{81500}{55000}\frac{55000}{4189}\right)^{3} \frac{16667}{900}$$

$$L_{hrs} = 136380hrs >> 36000hrs \quad \text{with SKF 7218 B}$$


$$L_{hrs} = 41915hrs >> 36000hrs \quad \text{with SKF 7215 B}$$

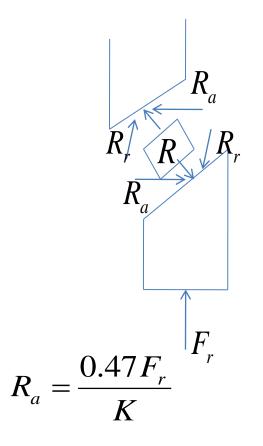
At point B, straight roller bearing


SKF NU2212 (or NJ2212) with d=60 mm and C=88 000 N (>77 686 N) will suit the application. The life of the bearing will be

$$L_{hrs} = \left(\frac{88000}{8012}\right)^{\frac{10}{3}} \frac{16667}{900} = 54544 hrs > 36000 hrs$$

Selection of Tapered Roller Bearings

Tapered roller bearings can carry both *radial loads and *axial (thrust) loads or *combination of radial & axial loads in relatively high capacities compared with other bearings


Tapered roller bearings

Ref: http://www.jtekt.co.jp/e/company/news/images/20060404_3e.jpg

Even, in cases:

when an <u>external axial</u> (thrust) load <u>is not</u> <u>present</u>, the radial load itself will induce (create) a

thrust reaction/force within the bearing because of taper geometry.

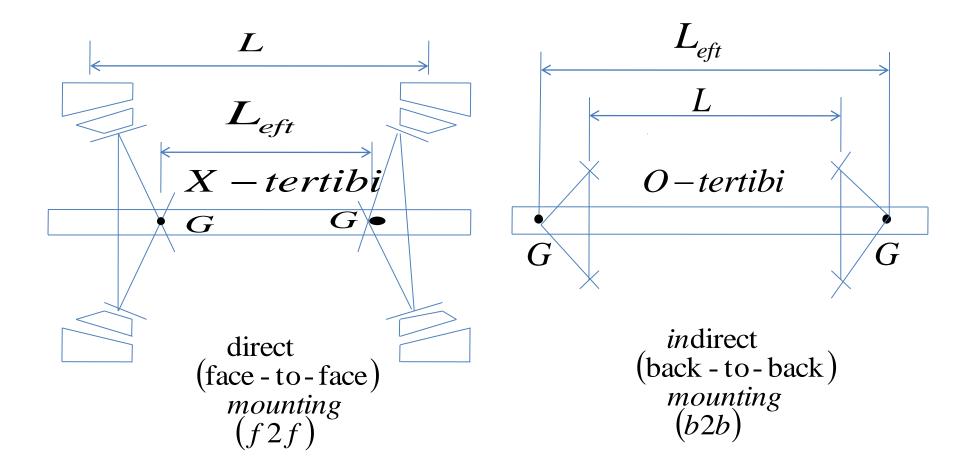
 R_a is created by F_r due to the taper geometry and this R_a axial force can be thought as a force trying to separate the races (rings) from the rollers.

To avoid separation of the races and rollers this thrust force R_a must be resisted/reacted by an equal and opposite force.

One way of generating this opposing force is to always use at least two tapered roller bearings on a shaft with opposite mounting.

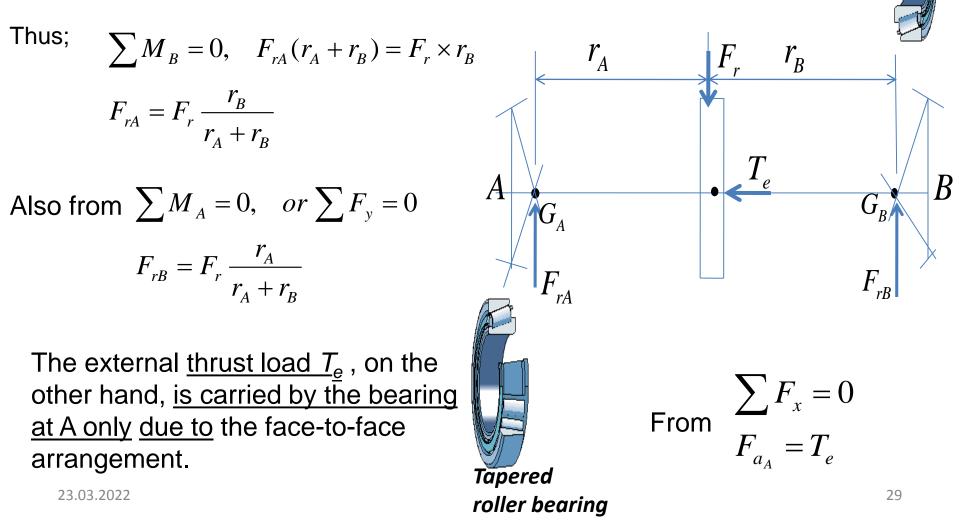
Above equation is given by TIMKEN, one of the largest tapered roller bearing manufacturer.

- $K \cong 1.5$ for radial bearings.
- $K \cong 0.75$ for steep angle bearings.


Exact values for K's are given in catalogues.

			500 m	ing at pm for ours, L10			D D_{h} d_{a} d_{a}	R
Bore	Outside diameter Di	Width T	One row radial lb daN	Thrust Ib deN	Fac- tor K	Eff. load center at	d _b 	oumbers Cap
	hch1.2595	0.3940	435	301	1.44	-0.12	A2037	A2126
	ma 31,991	10,008	192	134		- 3,0		ALING
10.4724		0.3940	435	301	1.44	- 0.12	A2047	A2126
\$12,000		10,008	192	J34 -		- 3,0		
0.4992	1.3775	0.4330	500	387	1.29	-0.10	A4049	A4138
12,680	34,988	10,998	222	172	3	-2,5		
0.5000	1.3775	0.4330	500	387	1.29	24. SUB-0496	A4050	A4138
12,700	34,988	10,998 .	222	172		-2,5		
0.5000	1.5000	0.5313	760	358	2.12	-0.20	00050	00150
12,700	38,100	13,495	338	159		- 5,1		00140
\$6.5906	1.3775	0.4330	500	387	1.29	-0.10	A4059	A4138
115,000	34,988	10,998	222	172		-2,5		71130
0.6250	1.3775	0.4330	575	314	1.83	-0.13	L21549	L21511
15,875	\$ 34,988	10,998	256	140		3,3		BA64.773
0.6250	1.5745	0.4730	530	480	1 2 1	0.06	A Coch	and the second second

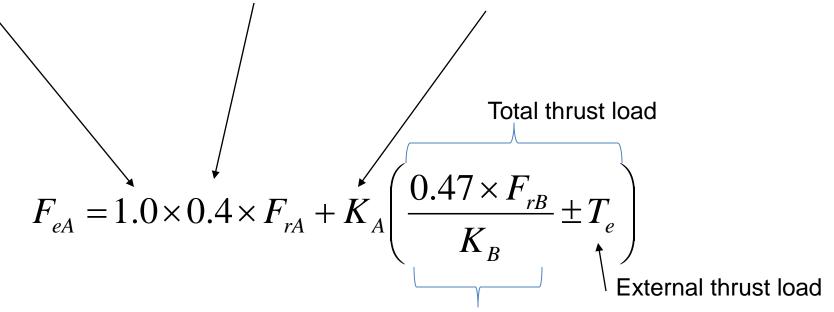
	Outside Bore diameter d Di			row radial lb	Thrust Ib	Fac- tor	Eff. load center	// Parts	oumbers	
1	<u> </u>	<i>D</i>	<i>T</i>	daN	deN	<u> </u>	at	Cone	Cup	
		nch1.2595	0.3940	435	301	1.44	-0.12	A2037	A2126	-) . (10)
		nn 31,991	10,008	192	134		- 3,0	Sector Sector		
	‡0.472 4	1.2595	0.3940	435	301	1.44	- 0.12	A2047	A2126	
	\$12,000	31,991 ***	10,008	192	J34 ·		- 3.0			
	0.4992	1.3775	0.4330	500	387	1.29	-0.10	A4049	A4138	
	12,680	34,988	10,998	222	172		-2,5			1 1.00
	0.5000	1.3775	0.4330	500	387	1.29	-0.10	A4050	A4138	· · · · .
	12,700	34,988	10,998 .	222	172		-2,5	_ /****	A1130	100
	0.5000	1.5000	0.5313	760	358	2.12	-0.20	00050	00150	Beur
•	12,700	38,100	13,495	338	159	No.	- 5,1		00130	dime
	\$0.5906	1.3775	0.4330	500	387	1.29	-0.10	A4059	A4138	đ
	115,000	34,988	10,998	222	172		-2,5	A1033	74130	1. A
	0.6250	1.3775	0:4330	575	314	1.83	-0.13	L21549	1 94611	
	15,875	\$ 34,988	10,998	256	140		3,3	P42 6 J 3 J	L21511	(mm
	0.6250	1.5745	0.4730	530	480	1.31	-0.06	A6062	46169	17
	15,875	39,992	12,014	236	212		- 1,5	AU002	A6157	
	0.6250	1.6250	0.5625	890	475	1.88	-0.20	09069	60 t ca	
	15,875	41,275	14,288	396	210	1.001	-5,2	03062	03162	
	0.6250	1.6875	0.5625	725	875	0.83	-0.05	11560	11000	
	15,875	42,862	14,288	-324	390	0.440	- 1,1	11590	.11520	20
	0.6250	1.6875	0.6563	1150	655	1.26	-0.23	14504	15400	
	15,875	42,862	16,670	515	292	s of agen	-6,0	17580	17520	
	0.6250	1.7500	0.6100	1020	620	1.64	-0,0	00000	A41-4	
	15,875	44,450	15,494	450	276	1.01		05062	05175	7
	0.6250	1.9380	0.7813	1600	730	2.20	3,9 0.36	04070	Battar	24 / 3
	15,875	49,225	19,845	715	324	2.20		09062	09195	4
	0.6250	2.1250	0.8750	1710	1730	0.99	-9,1	010CD		41
	15,875	53,975	22,225	760	770	Q.33 .	-0.23	21063	21212	64 62 80
	10.6299	t1.8504	0.8269			1.07	-5,8			80
	116,000	147,000	21,000	1560	1460	1.07	~0.24	HM81649	HM81610	50 42
	0.6690	1.6250	100 PA 2010 PA COLLECT	695	650	×	-6,0			55
	16,993		0.4687	530	480	1.11	-0.06	A6067	A6162	55
		41,275	11,905	236	212		-1,5			53 62 72 90
	0.6872	1.4380	0.4375	500	420	1.20	-0.08	A5069	A5144	50


中の日本目と

市時ない

B2b mounting provides stiffer structure than f2f mounting and it is recommended if there is tilting moment on the bearings.

For a typical tapered roller bearing application under the effect of external radial load F_r and external thrust load T_e ; <u>the roller radial reactions</u> at G_A and G_B are calculated by using the moment equations at effective load center G_A and G_B by the help of distances r_A and r_B .



In ball bearings the equivalent radial load was calculated by the relation:

$$F_e = V \cdot X \cdot F_r + Y \cdot F_a$$

The same relation is used for tapered roller bearings with a few modifications:

V=1.0 (rotation factor) and X becomes 0.4 and Y is the K value of bearing:

Thrust load created by the other bearing

For a f2f configuration as seen:

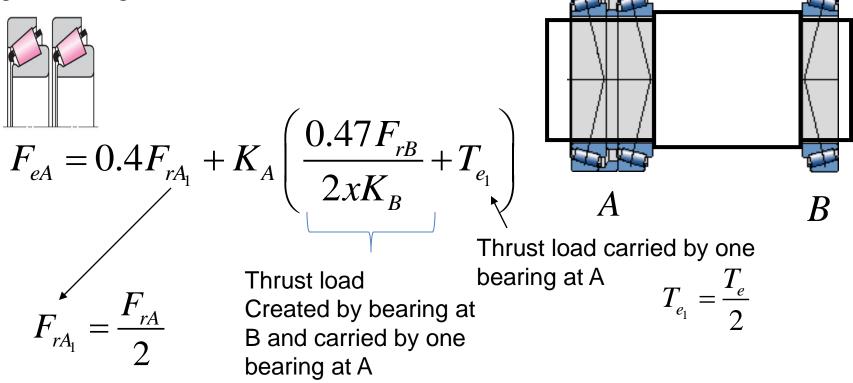
$$F_{eA} = 0.4F_{rA} + K_{A} \left(\frac{0.47F_{rB}}{K_{B}} + T_{e} \right)$$

$$F_{eB} = 0.4F_{rB} + K_{B} \left(\frac{0.47F_{rA}}{K_{A}} - T_{e} \right)$$

$$F_{rA} = 0.4F_{rB} + K_{B} \left(\frac{0.47F_{rA}}{K_{A}} - T_{e} \right)$$

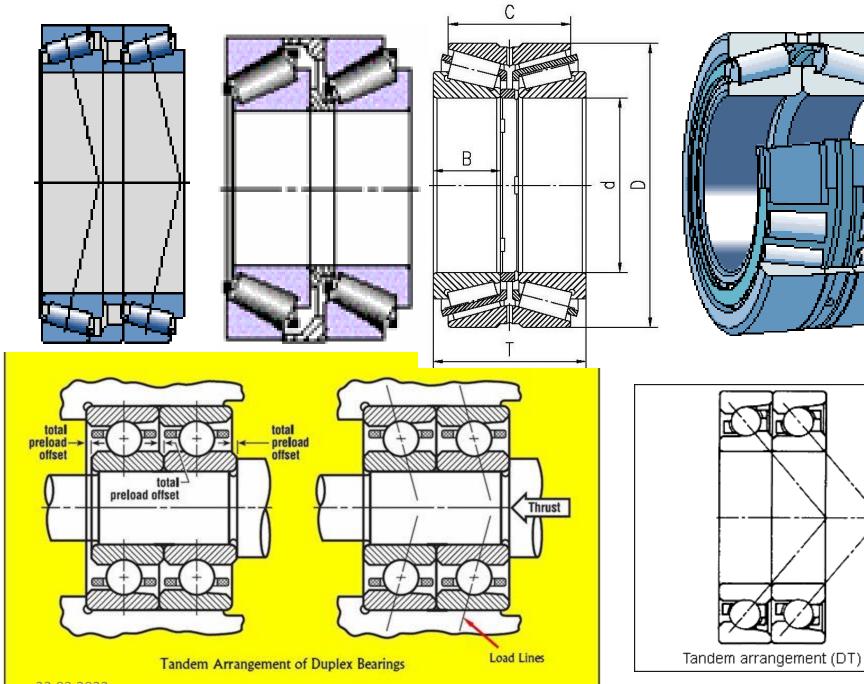
 Γ Γ Γ

r


However, we have to check if new equivallent radial load is more or less than the actual radial load on the bearing:

If,
$$F_{eA} < F_{rA}$$
 then $F_{eA} = F_{rA}$
If, $F_{eB} < F_{rB}$ then $F_{eB} = F_{rB}$

Also try not to forget using application factor as a load safety factor Γ


$$F_{eq_A} = af \times F_{e_A}$$
$$F_{eq_B} = af \times F_{e_B}$$

If a <u>tandem</u> arrangement (means two bearings together) is used at A, and a single bearing at B:

For bearing B (if a single bearing is used):

$$F_{eB} = 0.4F_{rB} + K_B \left(\frac{0.47F_{rA}}{K_A} - T_e\right)$$

Along with the equations given;

once external force and bearing reaction values are known, <u>a trial &</u> <u>error method</u> can be used to select a suitable tapered roller bearing for the information generally given as shaft speed and shaft diameter.

Then the life of bearing selected can be compared with the life required for the application.

$$L_D = \frac{L_R \cdot n_R}{n_D} \left(\frac{C_R}{F}\right)^a$$

If bearing selected provides a life reasonably larger than the life required then selection is correct,

$$L_D >? L_{req}$$

If NOT, then try a stronger bearing and check life again

Tapered roller bearings produced by TIMKEN do obey the relation of

$$C_{R} = F_{eq} \left[\frac{L_{D} n_{D}}{L_{r} n_{r}} \right]^{\frac{1}{a}}$$
$$C_{R}_{TIMKEN} = F_{eq}_{A,B} \left[\frac{L_{D} n_{D}}{L_{R} n_{R}} \right]^{\frac{1}{a}}$$

$$C_{R_{general}} = F_{eqv} \left[\frac{L_D}{10^6} \right]^{\frac{1}{a}}, a = \frac{10}{3}$$

where

 $\begin{array}{l} \mathsf{L}_{\mathsf{D}} \ \text{design} \ (\text{required}) \ \text{life} \ \text{of} \ \text{bearing} \ \text{in} \ \text{hrs} \\ \mathsf{n}_{\mathsf{D}} \ \text{design} \ \text{speed} \ (\text{in} \ \text{rpm}) \ \text{of} \ \text{the} \ \text{shaft} \\ \mathsf{L}_{\mathsf{r}} \ (\text{rating} \ \text{life}) \ 3000 \ \text{hrs} \\ \mathsf{n}_{\mathsf{r}} \ (\text{rating} \ \text{speed}) \ 500 \ \text{rpm} \\ \mathsf{F}_{\mathsf{eq}} \ \text{radial} \ \text{equivalent} \ \text{load} \ \text{to} \ \text{be} \ \text{carried} \end{array}$

 C_R (rating load) for bearings

These equations help calculate required rating load to be satisfied in choosing roller bearings from catalogue.

Selection procedure for TIMKEN Tapered Roller Bearings.

- 1) Calculate radial loads at related bearing points from statics
- 2) Calculate thrust load (T_e) and set the direction
- 3) Assume a K value of nearly 1.5 for both bearings $K_A = 1.5$ and $K_B = 1.5$
- 4) Calculate F_{eA} and F_{eB} values based on above values by using relations.

$$F_{eA} = 0.4 \frac{F_{rA}}{n} + K_A \left(\frac{0.47 F_{rB}}{n \times K_B} \pm \frac{T_e}{n} \right)$$
$$F_{eB} = 0.4 F_{rB} + K_B \left(\frac{0.47 F_{rA}}{K_A} \pm T_e \right)$$

Use correct directions for thrust load and also take into consideration tandem conditions if it exists n is the number of bearings at A (if tandem exists at A)

If
$$F_{e_A \atop B} < F_{r_A \atop B}$$
 then $F_{e_A \atop B} = F_{r_A \atop B} \Longrightarrow F_{eqv} = af \times F_e$

5) Use F_{eqv} values in load-life relation along with $L_D \& n_D$ values to calculate required rating load of the bearings to be used is selection from catalogue.

Here are the relations used to select TIMKEN tapered roller bearings

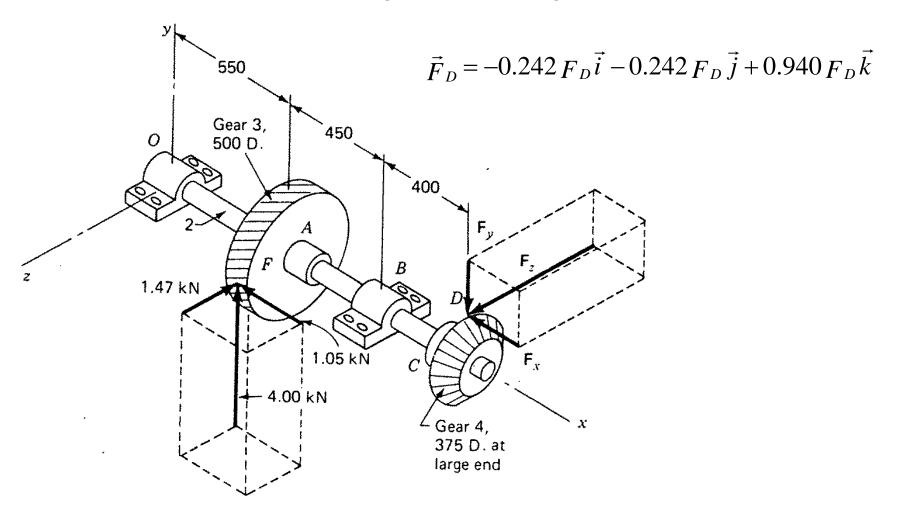
$$C_{R} = F \left[\frac{L_{D} x n_{D}}{L_{R} x n_{R}} \right]^{\frac{1}{a}} \qquad C_{R} = F \left[\frac{L_{D} x n_{D}}{L_{R} x n_{R}} \left(\frac{1}{6.84} \right) \right]^{\frac{1}{a}} x \frac{1}{\left(\ln \frac{1}{R} \right)^{\frac{1}{1.17a}}}$$

6) Choose a bearing (both cup-cone pair) from the catalogue which satisfies both diameter and rating load (C_R) requirements;

$$C_{Rcat} > C_R$$

7) Use the new and correct *K* values of selected bearings (K_A , K_B) in step 4 to recalculate the F_{eA} and F_{eB} values and then use *af* if required.

8) Use the new $F_{eqvA,B_{new}}$ values in life equation to calculate the new life which the selected bearing can run for (with 90 % reliability). This life has to be more than what is required.

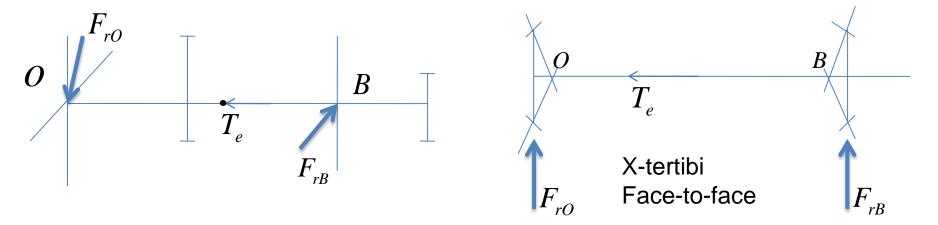

$$L_D = L_R \frac{n_R}{n_D} \left(\frac{C_R}{F_{eq_{new}}}\right)^a_{A,B}$$

9) Compare the newly calculated life with the life required;If it is more than what is required, then selection is correct,If NOT, then selection is wrong, TRY a stronger bearing until the life requirement is satisfied.

$$\begin{array}{ll} \mbox{If} & L_{D_{new}} > L_D & \mbox{selection is OK} \\ \mbox{If} & L_{D_{new}} < L_D & \mbox{re-try a stronger bearing} \end{array}$$

Example 3.4 (11.7) same as Fig. in Ex. 3.3

Example for tapered roller bearings 11.9 (same figure as in 11.10)


Tapered roller bearings are to be mounted in housings at points O and B with the bearing at O intended to take out the major thrust component.

a) The bearings are to have an L_{10} life of 36 000 hrs corresponding to a shaft speed of 900 rpm. Use 1.5 for *K* factors, unity for the application factor and find the required radial rating of each bearing,

b) Choose suitable bearings for both housings with diameter about 34 mm at O and 34 mm at B, for a life of L_{10} = 10 khrs at a shaft speed of 500 rpm from TIMKEN catalogue.

The reaction forces were found as shown in the figure.

 $T_e = 2.422 \ kN$ $F_{r_o} = 3.491 \ kN$ $F_{r_B} = 6.677 \ kN$

So,

$$F_{eO} = 0.4F_{rO} + K_o(\frac{0.47F_{rB}}{K_B} + T_e) = 0.4x3.491 + 1.5(\frac{0.47x6.677}{1.5} + 2.422) = 8.167kN$$

$$\begin{split} F_{eB} &= 0.4F_{rB} + K_B(\frac{0.47F_{rO}}{K_O} - T_e) = 0.4x6.677 + 1.5(\frac{0.47x3.491}{1.5} - 2.422) = 0.678kN \\ \text{Since} \quad F_{e_B} < F_{r_B}; \quad F_{e_B} = F_{r_B} = 6.677\ kN \end{split}$$

The required ratings for the bearings are:

$$C_{R} = F_{eq} \left[\frac{L_{D} n_{D}}{L_{r} n_{r}} \right]^{\frac{1}{a}} \rightarrow C_{R_{o}} = 8167 \left[\frac{36000 \times 900}{3000 \times 500} \right]^{\frac{3}{10}} = 20530 N$$
$$C_{R_{b}} = 6677 \left[\frac{36000 \times 900}{3000 \times 500} \right]^{\frac{3}{10}} = 16784 N$$

b) For
$$L_D = 10000hrs \& n_D = 500rpm$$

 $C_{R_O} = 8.167 \left[\frac{10000x500}{3000x500} \right]^{\frac{3}{10}} = 11.72kN(=2631lb)$
 $C_{R_B} = 6.677 \left[\frac{10000x500}{3000x500} \right]^{\frac{3}{10}} = 9.58kN(=2151lb)$

From TIMKEN catalogue on page 502 with a diameter of 1.375^e =34.92 mm> 34 mm different C values are possible the required values are 2150 lb & 2630 lb.

1)Try bearings with cone M38549 & cup 38510 with K=1.66 & C=2520lb= 11223 N for both points O & B. Now re-calculate

 F_{eO} & F_{eB}

Since K_A and K_B values changed from 1.5 to 1.66

$$F_{eO} = 0.4x3491 + 1.66(\frac{0.47x6677}{1.66} + 2422) = 8555N$$

$$F_{eB} = 0.4x6677 + 1.66(\frac{0.47x3491}{1.66} - 2422) = 291N \rightarrow F_{eB} = 6677N$$
$$L_{D_{new_o}} = L_R \frac{n_R}{n_D} \left(\frac{C_R}{F_{eO}}\right)^{\frac{10}{3}} = 3000x \frac{500}{500} \left(\frac{11223}{8555}\right)^{\frac{10}{3}} = 7414hrs < 10000hrs$$

not satisfactory

2) Try bearings with ; cone 02877 cup 02820 K=1.29 C=2620 lb=11668N for both O & B Re-calculate

 F_{eO} & F_{eB}

$$F_{eB} = 0.4F_{rB} + K_B \left(\frac{0.47F_{rA}}{K_A} - T_e\right)$$

$$F_{eA} = 0.4F_{rA} + K_A \left(\frac{0.47F_{rB}}{K_B} \pm T_e\right)$$

$$\begin{split} F_{eO} &= 0.4 \times 3491 + 1.29 \bigg(\frac{0.47 \times 6677}{1.29} + 2422 \bigg) = 7659 \ N \\ F_{eB} &= 0.4 \times 6677 + 1.29 \bigg(\frac{0.47 \times 6677}{1.29} - 2422 \bigg) = 2684.6 \ N < F_{rB} \rightarrow F_{rB} = 6677 \ N \\ L_{Do} &= 3000 x \ \frac{500}{500} \bigg(\frac{11668}{7659} \bigg)^{\frac{10}{3}} = 12200 hrs > 10000 hrs; \qquad \text{OK for point O} \\ L_{D_B} &= 3000 x \ \frac{500}{500} \bigg(\frac{11668}{6677} \bigg)^{\frac{10}{3}} = 19280 hrs > 10000 hrs; \qquad \text{OK for point B} \end{split}$$

So TIMKEN tapered roller bearing with d=1.375"=34.92 mm. Cone 02877 K=1.29 Cup 02820 C=2620 lb= 11668 N will satisfy the life & load requirements both at points O & B. If we use SKF tapered instead of TIMKEN, we use equation

$$F_{eqv} = X \times F_r + Y \times F_a \rightarrow L_{hrs} = \left(\frac{C}{F_{eqv}}\right)^a \frac{16667}{n_{rpm}}; \quad a = 10/3 \text{ for tapered rollers.}$$

X, Y factors are taken from SKF catalogue. Let $d \ge 34$ mm; In SKF we have bearings.

$\frac{F_a}{e} < e$	$\frac{F_a}{E} > e$
F_r^{-c}	F_r

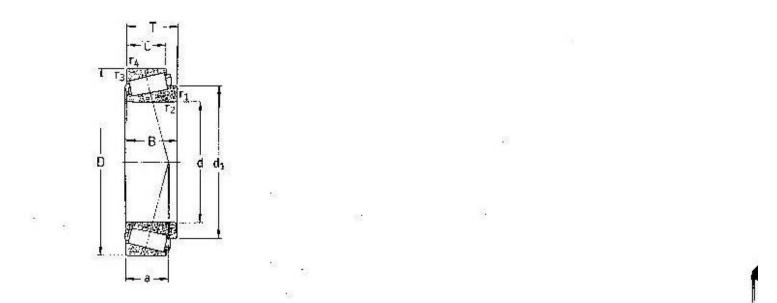
d (mm)	Designation	C (N)	C _o (N)	е	X	Y	X	Y
35	32007X	36500	30500	0.46	1	0	0.4	1.3
	30207	44000	32500	0.37	1	0	0.4	1.6
	32207	56000	45000	0.37	1	0	0.4	1.6
	33207	72000	62000	0.35	1	0	0.4	1.7
	30307							
	31307							
	32307							

Single row taper roller bearings

Equivalent dynamic bearing load

 $P = F_r$ when $F_a/F_r \le e$ $P = 0,4 F_r + Y F_a$ when $F_a/F_r > e$

The values of the calculation factors e and Y can be found in the product tables.


35

Equivalent static bearing load

 $P_0 = 0.5 F_r + Y_0 F_a$

When $P_0 < F_p P_0 = F_r$ should be used. The value of the calculation factor Y_0 can be found in the product tables.

Metric single row taper roller bearings d 35 - 40 mm

2.

Prín	cipal d	imensions	Basic load ratings dynamic static		Fatigue load	Speed ratings M. Refer- Limiting				Mass	Besignation			Calcul	ation fa	ctors
Ц	D	т	C	C _o	limit Pu	ence	speed				×	e	Y	Y ₀		
mm			kN	·	kN	r/min		kg	-	**		=				
35	62 62	18 18	49 42,9	54 49	5,85 5,2	8 500 8 000	11 000 11 000	0,22 0,22	+ 32007 X/Q 32007 J2/Q			0.46 0,44	1,3 1,35	0,7 0,8		
	72 72 72	18,25 24,25 28	51,2 66 84,2	56 78 106	6,1 8,5 11,8	7 000 7 000 6 300	9 500 9 500 9 500	0,32 0,43 0,56	30207 J2/0 32207 J2/0 33207/0			0,37 0,37 0,35	1,6 1,6 1,7	0,9 0,9 0,9		
	80 80 80 80	22,75 22,75 32,75 32,75	72,1 61,6 95,2 93,5	73,5 67 1D6 114	8,3 7,8 12,2 13,2	6 700 6 000 6 300 6 000	9 000 8 500 9 000 8 500	0,52 0,52 0,73 0,80	30307 J2/Q 31307 J2/Q 32307 J2/Q 32307 J2/Q 32307 BJ2/Q			0,31 0,83 0,31 0,54	1,9 0,72 1,9 1,1	1,1 0,4 1,1 0,6		
37	80	32,75	93,5	114	13,2	6 000	8 500	0,85	32307/37 8J2/0	2	;	0,54	1,1	0,6		

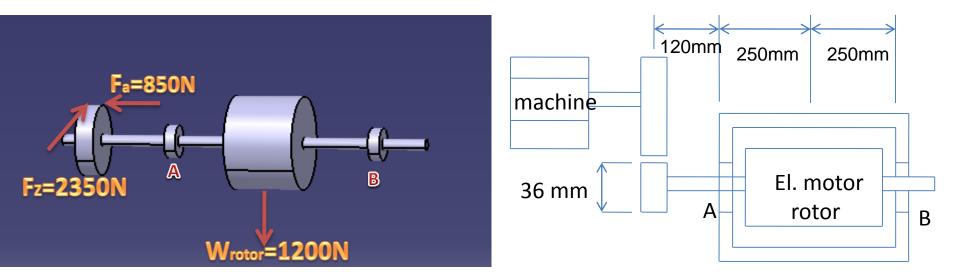
$$\begin{array}{ll} \mbox{Let's try SKF 30207 bearings:} & F_{rO} = 3491 \, N \\ \mbox{For point O \& B} & F_{rB} = 6677 \, N \\ \hline \left(\frac{F_a}{F_r} \right)_O = \frac{2422 + \frac{0.47 \times F_{r_B}}{K_B}}{3491} = 1.2556 > e = 0.37 \rightarrow X = 0.4, \ Y = 1.6 \\ O \\ \hline \left(\frac{F_a}{F_r} \right)_B = \frac{\frac{0.47 \times F_{r_O}}{K_O}}{6677} = \frac{1025}{6677} = 0.15 < e = 0.37 \rightarrow X = 1.0, \ Y = 0.0 \\ B \\ F_{eO} = 0.4 \times F_{r_O} + 1.6 \times \left(\frac{0.47 \times F_{r_B}}{K_B} + F_a \right) = 0.4 \times 3491 + 1.6 \times \left(\frac{0.47 \times F_{r_B}}{1.6} + 2422 \right) \\ F_{eO} = 0.4 \times 3491 + 1 \times (0.47 \times 6677 + 1.6 \times 2422) = 8410 \, N \\ af = 1.0 \rightarrow F_{eqvO} = F_{eO} = 8410 \, N \\ L_{hrso} = \left(\frac{44000}{8410} \right)^{\frac{10}{3}} \frac{16667}{500} = 8\,286 \, hrs < 10\,000 \, hrs \rightarrow \ FAILS. \end{array}$$

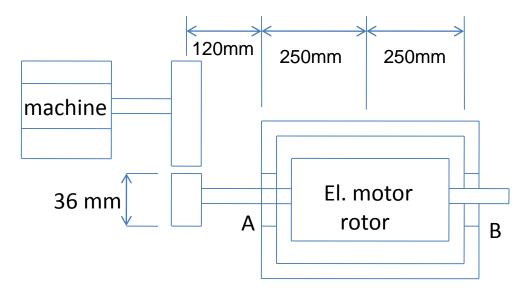
Try SKF 32207 (C = 56 000 N)

$$F_{eO} = 0.4 \times 3491 + 1.0 \times (0.47 \times 6677 + 1.6 \times 2422) = 8410 N$$

 $L_{hrs_O} = \left(\frac{56000}{8410}\right)^{\frac{10}{3}} \frac{16667}{500} = 18515 \ hrs > 10\ 000 \ hrs \rightarrow \text{OK}$ at O SKF 32207.

$$F_{eB} = 1.0 \times F_{r_B} + 0 \times \left(\frac{0.47 \times F_{r_O}}{K_O} + F_a\right) = F_{r_B} = 6677 N$$


SKF 30207 (*C* = 44 000 *N*)
$$L_{hrs_B} = \left(\frac{44000}{6677}\right)^{3.33} \frac{16667}{500} = 17\ 882\ hrs > 10\ 000\ hrs \rightarrow \text{OK} \text{ at } \text{B} \text{ SKF } 30207.$$


Example 3.5

Example for ball bearings

The electric motor rotor rests on two bearings at A and B. It drives a machine via a pair of helical gear. The rotor itself weighs 1200 N and is carried by the two bearings symmetrically.

At the mesh point of the two gears a tangential load of 2350 N and an axial load of 850 N exist as shown in the figure. The diameters of the rotor at bearings points are 40 mm and in between where rotor is fixed, it is 45 mm. The motor power is 24.5 HP and rotor rotates at 1500 rpm. Based on these information select bearings at A and B.

The required life for the bearing is not stated in the question. In such cases we can make use of suggestions given in Tables. Determine the required life for the electric motor from Table 11.6

- Machines for intermittent service, reliable 8-14 khr (L₁₀)
- Machine for 8-h service not always fully utilized 14-20 khr
- A bearing with rating load C will be chosen from catalogue and life will be checked.

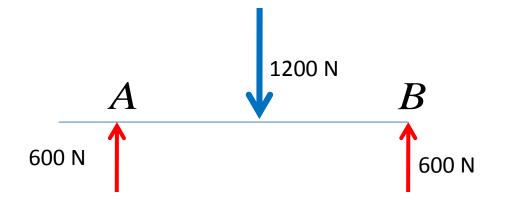
51

$$F_{e} = ?, \quad F_{e} = V \times XF_{r} + YF_{a}$$

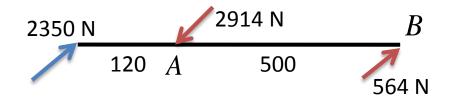
$$F_{e} = ?, \quad F_{e} = V \times XF_{r} + YF_{a}$$

$$F_{eqv} = af \times F_{e} \quad af = ? \quad 1.2$$

$$F_{r} = ? \quad \text{At A \& B}$$

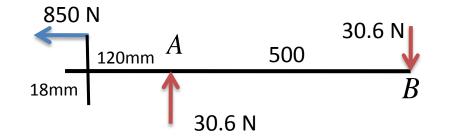

$$F_{a} = ?$$

$$F_{a} = ?$$


Table 11-6 BEARING-LIFE RECOMMENDATIONS FOR VARIOUS CLASSES OF MACHINERY VARIOUS VARIOUS

Type of application	Life, kh
Instruments and apparatus for infrequent use	Up to 0.5
Aircraft engines	0.5-2
Machines for short or intermittent operation where service interruption	
is of minor importance	4-8
Machines for intermittent service where reliable operation is of great	
importance	8-14
Machines for 8-h service which are not always fully utilized	14-20
Machines for 8-h service which are fully utilized	20-30
Machines for continuous 24-h service	50-60
Machines for continuous 24-h service where reliability is of extreme	
importance	100-200

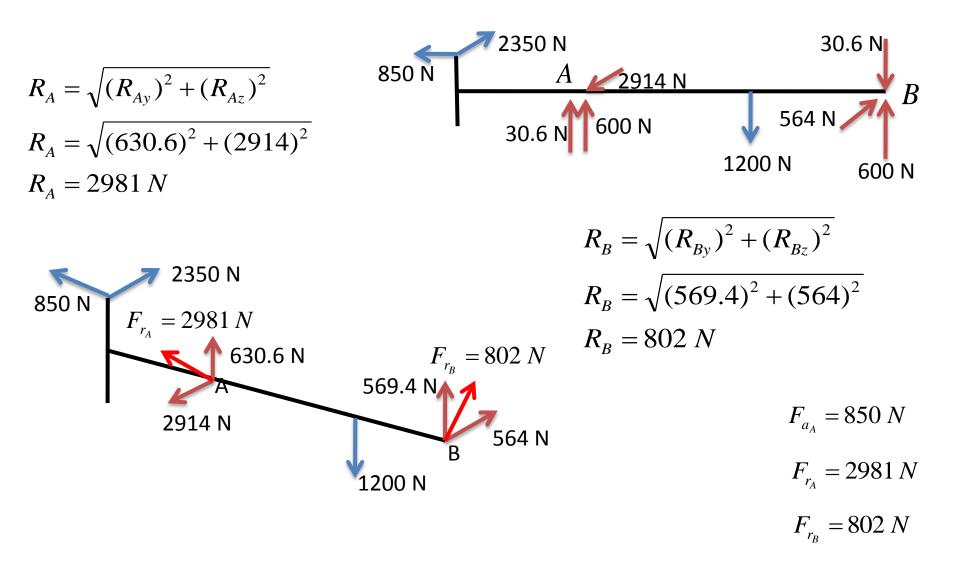
Due to weight of the rotor (1200 N)

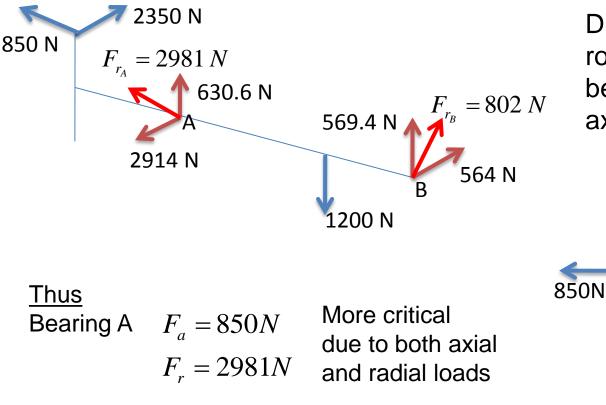


Due to tangential load at gear (2350N)

$$\sum M_A = 0;$$

2350×120 = F_{Bz} ×500
 $F_{Bz} = 564 N$


 $\sum F_{Z} = 0;$ $F_{Az} = 2350 + F_{Bz}$ $F_{Az} = 2350 + 564 = 2914 N$ Due to axial load (850N)



$$\sum M_A = 0;$$

850×18 = F_{By} ×500
 $F_{By} = 30.6 N$

$$\sum F_Y = 0;$$

$$F_{Ay} = F_{By} = 30.6 N$$

Resultant Forces at points A and B

Due to geometry of the EM rotor and bearing configuration bearing A should carry the axial load 850 N.

В

<u>Thus</u> Bearing A	$F_{a} = 850N$
	$F_{r} = 2981N$
Bearing B	$F_a = 0N$

 $F_{r} = 802N$ For Bearing A from catalogue With d=40 mm available bearings

of deep groove (cheap) ball type are:

6008	C=12900 N	C _o = 9300 N
6208	C=23600 N	C _o =16600 N
6308	C=31500 N	C _o =22400 N
6408	C=49000 N	C _o =36500 N

Let's use **6208**; C=23600 N d= 40 mm.

$$\frac{F_a}{C_o} = \frac{850}{16600} = 0.0512 \rightarrow e \cong 0.25$$
$$\frac{F_a}{F_r} = \frac{850}{2981} = 0.285 > e = 0.25$$
$$So; \rightarrow X = 0.56, \ Y = 1.7$$

6008	C=12900 N	C _o = 9300 N
6208	C=23600 N	C _o =16600 N
6308	C=31500 N	C _o =22400 N
6408	C=49000 N	C _o =36500 N

$$\begin{split} F_e &= V \times XF_r + YF_a = 1.0 \times 0.56 \times 2981 + 1.7 \times 850 \\ F_e &= 3114 \ N \ (>F_r) \\ F_{eqv} &= af \times F_e = 1.2 \times 3114 = 3737 \ N \\ L_{hrs} &= \left(\frac{23600}{3737}\right)^3 \times \frac{16667}{1500} = 2798 \ hrs <<< 8-14 \ khrs \quad \text{Not satisfactory} \end{split}$$

Re-choose 6308

$$\begin{split} C &= 31500N, \quad C_0 = 22400N & F_a = 850N \\ \frac{F_a}{C_0} &= 0.038 \rightarrow e \cong 0.24; \quad \frac{F_a}{F_r} = 0.285 > e; \quad X = 0.56, \quad Y = 1.8 & F_r = 2981N \\ F_e &= 0.56 \times 2981 + 1.8 \times 850 = 3200 \; N(>F_r) \\ F_{eqv} &= 1.2 \times 3200 = 3840 \; N \\ L_{hrs} &= \left(\frac{31500}{3840}\right)^3 \frac{16667}{1500} = 6133 \; hrs < 8 \; khrs \text{ Not satisfactory} \end{split}$$

Re-choose 6408

$$\begin{split} &C = 49000N, \quad C_0 = 36500N \\ &\frac{F_a}{C_0} = 0.023 \rightarrow e \cong 0.22; \quad \frac{F_a}{F_r} = 0.285 > e; \quad X = 0.56, \quad Y = 2.0 \\ &F_e = 0.56 \times 2981 + 2.0 \times 850 = 3370N (>F_r) \\ &F_{eqv} = 1.2 \times 3370 = 4044 \ N \\ &L_{hrs} = \left(\frac{49000}{4044}\right)^3 \frac{16667}{1500} = 19766 \ hrs > 14 \ hhrs \\ &\text{ satisfactory} \end{split}$$

23.03.2022

(use 6408 deep groove for both A & B)

Time Varying Loads

If the load on the bearing is not constant over the life-time of the bearing but varies with time or revolution of bearing then we <u>have to find an equivalent or</u> <u>mean load</u> which is <u>assumed to be constant</u> over the life-time of the bearing and use it in following calculations.

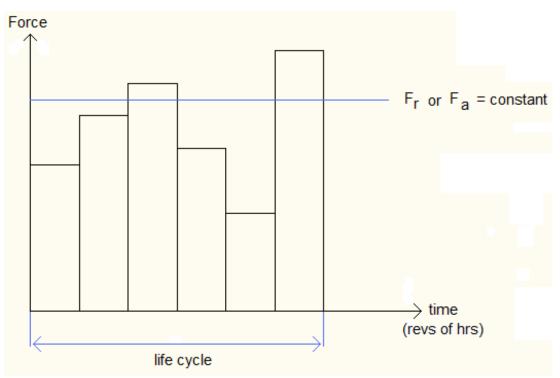
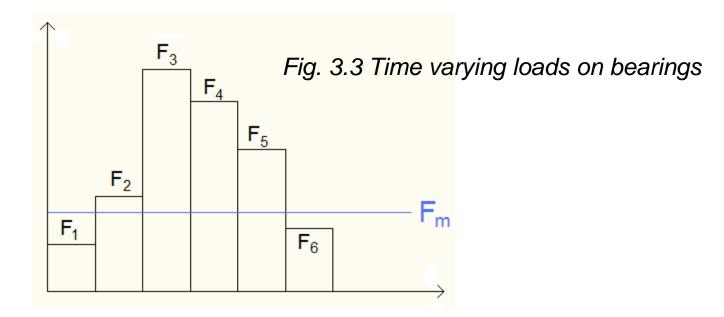
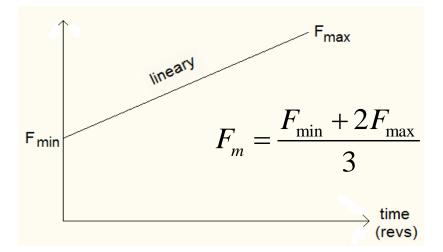



Fig. 3.2 Time varying loads on bearings



By using the load life relation of the bearing:

 $\begin{array}{ccc} \underline{Load} & \underline{Revs, hrs} \\ F_1 & N_1 & L_1^a \cdot N_1 = L_2^a \cdot N_2 & F_1^a \cdot N_1 = F_2^a \cdot N_2 = \sum_i^n F_i^a \cdot N_i \\ F_2 & N_2 \\ F_3 & N_3 & F_m^a \cdot N = F_1^a \cdot N_1 + F_2^a \cdot N_2 + F_3^a \cdot N_3 + \cdots \\ F_4 & N_4 \\ \cdot & \cdot & F_m^a \cdot N = \sum F_i^a \cdot N_i \end{array}$

or
$$F_m = \left[\frac{\Sigma F_i^a . N_i}{N}\right]^{\frac{1}{a}}$$

Mean load can be found for varying axial load as well as for varying radial load

where

$$N = N_1 + N_2 + N_3 + \dots$$

a=3 for balls
a=10/3 for rollers

Then use F_m in other equations such as

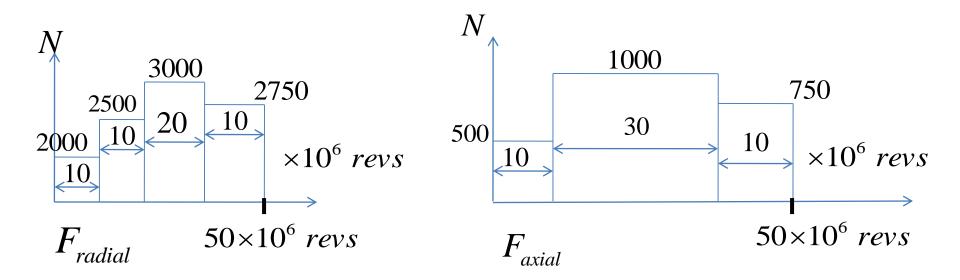
$$F_{eqv} = V.XF_{mr} + Y.F_{ma}$$

$$L_{revs} = \left(\frac{C}{F_{eqv}}\right)^a x 10^6$$

Fig. 3.4 Time varying loads on bearings

Example 3.6 Example for varying load application

A bearing during operation carries loads as shown in figures for its full life. Both the radial & the axial loads are of varying nature.


Choose suitable bearings for the application if the shaft speed is 1500 rpm and the shaft diameter is:

a) 40 mm

b) 35 mm

c) 25 mm

- i) Deep groove balls
- ii) Angular contact balls
- iii) Cylindrical roller (straight)

Since the loads are varying type we have to calculate mean values for both radial and axial loads F_{m_r} and F_{m_a}

$$F_{m} = \left[\frac{\sum F_{i}^{a} \cdot N_{i}}{N}\right]^{\frac{1}{a}} \quad \text{let's assume that we will use ball bearings: so a= 3.}$$
$$F_{m_{r}} = \left[\frac{(2000^{3} \times 10 \times 10^{6}) + (2500^{3} \times 10 \times 10^{6}) + (3000^{3} \times 20 \times 10^{6}) + (2750^{3} \times 10 \times 10^{6})}{(10 + 10 + 20 + 10) \times 10^{6}}\right]^{\frac{1}{3}} = 2700 N$$

$$F_{m_a} = \left[\frac{(500^3 \times 10 \times 10^6) + (1000^3 \times 30 \times 10^6) + (750^3 \times 10 \times 10^6)}{(10 + 30 + 10) \times 10^6}\right]^{\frac{1}{3}} = 892 N$$

Now, we use F_{m_r} and F_{m_a} to calculate equivalent load F_e and the life to run for different bearings.

a) Using deep groove ball bearings (cheap and most widely used) with d=40 mm we have alternatives of

d (mm)	Designation	C (N)	С _о (N)
40	61808	2400	2200
	16008	10200	7800
	6008	12900	9300
	6208	23600	16600
	6308	31500	22400
	6408	49000	36500

$$\begin{aligned} \frac{F_a}{C_o} &= \frac{892}{9300} = 0.096 \rightarrow e \cong 0.28 \\ \frac{F_a}{F_r} &= \frac{892}{2700} = 0.33 > e \rightarrow X = 0.56, Y \cong 1.55 \text{ and let } af = 1.2 \\ F_e &= 0.56 \times 2700 + 1.55 \times 892 = 2895 N \ (>F_r = 2700 N) \\ F_{eqv} &= af \times F_e = 1.2 \times 2895 = 3475 N \\ L_{hrs} &= \left(\frac{C}{F_{eqv}}\right)^a \times \frac{16667}{n_{rpm}} = \left(\frac{12900}{3475}\right)^3 \frac{16667}{1500} = 568 \ hrs \\ &= 568 \ hrs \times \frac{60 \ min}{1 \ hrs} \times \frac{1500 \ revs}{min} = 51157980 \ revs = 51.15 \times 10^6 \ revs > \sum N_i \end{aligned}$$

Since $L_{revs} = 51.15 \times 10^6 \ge 50 \times 10^6$ total life <u>OK</u>

$$L_{revs} = \left(\frac{C}{F_{eqv}}\right)^a \times 10^6 \ revs = \left(\frac{12900}{3475}\right)^3 \times 10^6$$
$$= 51.15 \times 10^6 \ revs > \sum N_i \quad \underline{OK}$$

Do other diameters yourself

Try also ii) angular contact ball bearings? iii) cylindrical roller (straight) bearings (a=10/3) ? ! !

<u>OR</u>

ii) Choose angular contact ball bearings with d= 40 mm

SKF

d, mm	designation	C , N	C ₀ , N
40	7208B	24500	18600
	7308B	34500	25000

e= 1.14
$$\frac{\frac{F_a}{F_r} < e}{X + Y + X + 1} \frac{\frac{F_a}{F_r} > e}{0.35 + 0.57}$$

$$\frac{F_a}{F_r} = \frac{892}{2700} = 0.33 < e = 1.14 \rightarrow X = 1.0, Y = 0.0, Let \ af = 1.2$$

$$F_e = X \times F_r = 2700 \ N \rightarrow F_{eqv} = 1.2 \times 2700 = 3240 \ N$$

$$C_{req} = \left(\frac{L_{hrs} \times n_{rpm}}{16667}\right)^{\frac{1}{a}} \times F_{eqv} \quad or \quad C_{req} = \left(\frac{L_{revs}}{10^6}\right)^{\frac{1}{a}} \times F_{eqv}$$

$$C_{req} = \left(\frac{50 \times 10^6}{10^6}\right)^{\frac{1}{3}} \times 3240 = 11935 \rightarrow 7208B \ with \ C = 24500 \ N \text{ will satisfy}$$

$$L_{rev} = \left(\frac{C_{req}}{10^6}\right)^{\frac{a}{2}} \times 10^6 - \left(\frac{24500}{10^6}\right)^{\frac{3}{2}} \times 10^6 - 432 \times 10^6 \ ravs > 50 \times 10^6 \ ravs$$

$$L_{revs} = \left(\frac{req}{F_{eqv}}\right) \times 10^6 = \left(\frac{24300}{3240}\right) \times 10^6 = 432 \times 10^6 \ revs > 50 \times 10^6 \ revs$$

iii) Cylindrical straight roller bearing!!