FE 305 Experiment 6 Bacteriological Examination of Meat and Fermented Meat Products

Contents

- Total Aerobic Mesophilic Bacteria Count
- Mold and Yeast Count
- Lactic acid bacteria Count
- Coliform Count

Experiment No from Book: 34

Samples needed for this experiment

- Home-made fermented sausage
- Pasteurized sausage
- Fermented sausage

Purpose and Importance

- Meat and meat products are pershiable foods during their storage and they may need extra preservation.
- Raw meat has high water activity and open to deterioration caused by inflesh microorganisms placed in blood or gut.
- The gut is the most important source of bacteria, contributing *C. Perfingens, Salmonella, Staphylococcus,* and coliforms to the meat surfaces.

Purpose and Importance

- Fermented sausages. During process and storage; low pH and drying may destroy most of the bacteria.
- *S. aureus* may grow and produce toxin during the fermentation period. *S. aureus* may die out but toxin remains.
- Yeast and mold growth on the surface of sausages during production and storage.

Tests and Analysis

- Total Count
 - Media: PCA
 - Method: Spread Plate
 - Incubation: 37 C for 24 hours

- Mold and Yeast Count
 - Media: PDA
 - Method: Spread Plate
 - Incubation: 25 C for 3-5 days

Tests and Analysis

- Lactic acid bacteria Count
 - Media: MRSA
 - Method: Spread Plate
 - Incubation: 42 C for 72 hours

- Coiform Count
 - Media: VRBA
 - Method: Spread Plate
 - Incubation: 37 C for 2 days

Sampling and Preparation

- First sllice and chop the sausage with sterile knife.
- 25 g sausage sample + 225 ml 0.1% sterile peptone water = 10⁻¹ diluted sample.

Material and Methods

- Fermented sausage and home made sausage samples,
- 10⁻¹ diluted sample and dilutions.
- Spreader
- Sterile pipette
- Incubator
- Alcohol
- Bunsen burner
- Sterile PCA, PDA, MRSA and VRBA media

Procedure

- Take 0.2 ml of sample from each dilution by using sterile pipette at Aseptic Conditions.
- Place the sample on PCA, PDA, MRSA, VRBA petri plates near flame. **Total Count**

Procedure

- Sterilize spreader with dipping in alcohol and passing through flame.
- Spread the sample on petri plate by using spreader.

Results

• Count formed colonies on every petri plate for each dilution and record results on the given table below.

- You can divide petri into equal parts to count easily.
- Ex: For Home made yogurt
 - Non \rightarrow Too number to count \rightarrow TNTC
 - -1 → 546
 - -2 → 186
 - -3 → 34
 - -4 $\rightarrow 0$

Sample names	Dilutions					
	non	10-1	10-2	10 ⁻³	10-4	10 ⁻⁵
Home-made sausage	TNTC	546	186	34	0	0
Fermented sausage						
Pasteurized sausage						

Calculation

• # of microorganisms / ml of juice=-

inoculum amount in one petri

X Dilution factor

Count of microorganisms in one petri

- Ex: For Fermented sausage take only counts between 30<x<300 colonies into calculation.
 - Non: TNTC

- Take average of these two results
- # of microorganisms / g or ml of water= $\frac{186000+340000}{2} = 263000$ microorganism / g of fermented sausage

Same Calculation for Mold and Yeast, Lactic acid bacteria and Coliform count

Evaluation of Results

- Total count → Calculate and record # of microorganisms / g of sasuage
- Mold and Yeast count → Calculate and record # of molds / g of sasuage
- Lactic acid bacteria count → Calculate and record # of LAB/ g of sasuage
- Coliform count → Calculate and record # of coliforms/ g of sasuage

Total count gives information about general microbial conditions of fruit juice.

Mold and Yeast count is important for spoilage and shelf life of Fruit Juice.