FE 305 Experiment 2 Bacteriological Examination of Water

Contents

- Total Aerobic Mesophilic Bacteria Count
- Coliform Count
 - Presumptive Test
 - Confirmed Test
 - Completed Test

Samples needed for this experiment

- River Water directly obtained
- Pool water
- Tap water
- Bottled Drinking water

Experiment No from Book: 4-15-46

Water types

- Spring or well water
- Specifically prepared drinking water
- Purified water
- Fluoridated water
- Mineral water

Importance of examination of water

- Main food material
- Can be consumed directly or added to food materials
- In order to keep product safe added water should be safe

Preperation of Serial Dilution

- In order to make a succesfull counting method we need serial dilution of samples.
- 9 ml of Sterile 0.1 % peptone water tubes are used for dilution.
- 1 ml sample was taken from non diluted sample and added into 9 ml of dilution water in order to obtain 10⁻¹ dilution.

Total Aerobic Mesophilic Bacteria Count

• Media: Plate Count Agar

- Incubation conditions:
- Spread Plate Technique
- Count formed colonies

Material and Methods

- Sterile PCA petri plates
- Sterile Serial Dilution water tubes (9 ml)
- Spreader
- Alcohol
- Pipette (5 and 1 ml)
- Bunsen burner
- Incubator 37 C

Procedure of Total Count

- Take 0.1 ml of sample from each dilution by using sterile pipette at Aseptic Conditions.
- Place the sample on PCA petri plate near flame.

Procedure of Total Count Spread Plate

- Sterilize spreader with dipping in alcohol and passing through flame.
- Spread the sample on petri plate by using spreader.

 Incubate inoculated petri dishes at 37°C Oven for 24-48h. Count formed colonies

Results of Total Count

• Count formed colonies on every petri plate for each dilution and record results on the given table below.

- You can divide petri into equal parts to count easily.
- Ex: For river water
 - Non \rightarrow Too nuber to count \rightarrow TNTC • -1 \rightarrow 546
 - -2 → 186
 - -3 → 34
 - -4 → 0

Sample names	Dilutions						
	non	10-1	10-2	10 ⁻³	10-4	10 ⁻⁵	
River water	TNTC	546	186	34	0	0	
Pool water							
Tap water							
Drinking water							

Calculation

- # of microorganisms / g or ml of water= $\frac{Count of microorganisms in one petri}{inoculum amount in one petri} X Dilution factor$
- Ex: For river water take only counts between 30<x<300 colonies into calculation.
 - Non: TNTC 546 \rightarrow No calculation above 300 • -1: 186 186 • -2: 0.1 *ml* 34 34 • -3: 0.1 ml \rightarrow No calculation below 30 0 • -4:
 - Take average of these two results
 - # of microorganisms / g or ml of water= $\frac{186000+340000}{2}$ = 263000 microorganism / ml of water

Coliform Count

- Presumptive Test
 - Media: Brillant Green Bile Broth
 - Incubation: 37 C for 48 hours
 - Most Probable Number method 3 tubes
 - Decide Positive tubes and calculate # of coliforms / ml water
- Confirmed Test
 - Media: Eosine Methylene Blue Agar
 - From Positive Presumptive Test Tubes
 - Streak Plate Technique
 - Observe isolated colonies on petri
- Completed Test
 - Samples from colonies formed on petri plates
 - Observation under microscope 40x and 100x with Gram Staining

Presumptive Test MPN method materials

- Water sample
- Serial Dilution Water Test tubes
- BGBB with durham tubes
- Sterile pipette (10 and 1 ml)
- Bunsen burner
- Tube rack

MPN method procedure

- Take 1ml of sample from each dilution by sterile pipette and inoculate 1ml in each of three seperate BGBB broth tubes at aseptic conditions.
- By this, you will have 3 BGBB tubes for each dilution sample inoculated.

- Place the tubes in a tube rack in order from non diluted to diluted.
- Incubate at 37°C for 48 h. Observe results and decide positive test tubes.

Results of MPN method

Gas formation in the durham tubes

Turbidity at the broth

2 1 0 from MPN Table

- For each dilution count positive test tubes from 3 test tubes.
- Record results for each dilution.
- Calculate # of coliforms / ml of water from MPN table

Sample	non	10 ⁻¹	10 ⁻²	10 -3	10-4	10 ⁻⁵
River water	3	3	2	1	0	0

Calculation

		Confidence limits (95%)		# of coliforms / ml of water =	
Positive tubes	MPN/g ou ml	Low	High	MPN number from table	
0-0-0	<3.0		9.5	100 × Dilution Factor of middle tube	
0-0-1	3.0	0.15	9.6		
0-1-0	3.0	0.15	11		
0-1-1	6.1	1.2	18	• For 2 1 0 \rightarrow MPN number from table = 15	
0-2-0	6.2	1.2	18		
0-3-0	9.4	3.6	38		
1-0-0	3.6	0.17	18	15	
1-0-1	7.2	1.3	18	$\frac{1}{100}$ X Dilution factor of middle tube	
1-0-2	11	3.6	38	100	
1-1-0	7.4	1.3	20		
1-1-1	11	3.6	38		
1-2-0	11	3.6	42	\frown	
1-2-1	15	4.5	42	2 (1) 0	
1-3-0	16	4.5	42		
2-0-0	9.2	1.4	38	 Look at the records at dilution table and find for dilution of 	
2-0-1	14	3.6	42	10-3	
2-0-2	20 MIDN	4.5	42	middle tube which is $10^{-3} \rightarrow \text{DIIUTION Factor } 10^{-3}$	
2-1-0	15	3.7	42	1 🗗	
2-1-1	20 number	4.5	42	$\frac{15}{10}$ X 103	
2-1-2	27	8.7	94	100 1 105	
				150 coliforms / ml of water	

Confirmed test

- Made from positive presumptive test tubes
- To confirm culture growing in tubes as coliforms

Materials

- Sterile EMBA plates
- Positive presumptive test tubes
- Inoculating loops
- Bunsen burner

Method

• Streak Plate Method

Incubation

• Incubate inoculated petri plates at 37°C for 24 – 48 hours.

Procedure

- Sterilize the inoculating loops by holdingon flame of bunsen burner.
- Take 1-2 loops of culture sample from Positive tubes
- Inoculate sample by using streak plate method and incubate.

The Streak Plate Isolation Method

Results

Completed test

- Morphological examination aand Gram staining of growing cultures on EMBA.
- Most of the lactose fermenters seems as Gram negative (-)

Materials

- Light Microscope with high power and oil immersion objectives
- Gram staining kit (Crystal Violet, Safranine, Iodine, Alcohol solutions)
- Pasteur pipette
- Glass slide
- Forceps
- Inoculating loop

Method

• Gram Staining

Procedure

 Take samples from EMBA plate by using sterile loop and place on a sterile glass slide.

Smear Preparation

Allow the smear to air dry

Pass through flame several times to kill and fix microorganisms to the slide

Staining Smear

Observation Under Microscope

 After staining place glass slides on Microscope stage and put a drop of immersion oil. Observe under 100x objective and decide G + or G – according to colors.

Evaluation of Results

• Total count → Calculate and record # of microorganisms / ml of water

Coliform count

- Presumptive test MPN method
 - Calculate and record # of coliforms / ml of water (It should be zero for drinking water
- Confirmed test
 - Record EMBA growth results of positive presumptive test tubes.
- Completed test
 - Record Gram stain results of colonies isolated on EMBA plate

Presence of coliforms in drinking water indicates contamination from sewage because coliforms are a group of microorganisms fermenting sugars and producing carbondioxide. These microroganisms normally present human intestine and should not be present in dirnking water.