FE 204 Experiment 2 Aseptic Transfer Techniques and Colony selection

Contents

- Definitions
- Transfer techniques
- Procedure
- Result examination

Aseptic Techniques

Inoculation: The act of introducing microorganisms into surroundings suited to their growth, as a culture medium.

Inoculum: The substance used for inoculation.

Aseptic technique: is the collection of procedures and techniques designed to prevent the introduction of unwanted organisms into a pure culture.

Growth: Result of multiplication of microorganisms in a medium.

Colony: Microbial accumulation which can be seen by naked eye on an agar surface.

Culture: A medium containing one type of microorganism grew inside.

Aseptic transfer techniques

Advantages of Transfer

- Microorganisms use nutrients and deplete energy source in one medium.
 To keep them alive they should be transferred into a fresh medium containing nutrients.
- In order to store microorganisms longer time, slant and deep media is used for keeping culture fresh at freezing temperatures.
- By transferring, media format can be changed from agar to broth.
- For activation of freze stored microorganisms, transfer methods are used.

Materials used in LAB

- Sterile nutrient broth
- Sterile nutrient agar slant
- Sterile nutrient agar deep
- E. coli broth culture
- E. coli slant culture
- *E. coli* petri plate culture
- Inoculating Loop
- Needle
- Bunsen burner
- 1 ml pipettes

Inoculating Loop and Needle

Inoculating Loop

• Inoculating needle

Sterilization of loop and needle

Broth → Broth Transfer

• E. coli broth

Nutrient broth containing *E. coli* bacteria growth inside.

ulation loop is use

• Sterile broth

Nutrient broth containing *no* bacteria growth inside.

Inoculation loop is used for transfer

Broth → Broth Transfer

Sterilize loop

Flame the mouth of tube.

Inoculate 1 loopful *E. coli* sample into sterile Nutrient broth.

Hold the cap with little finger and take 1 loopful culture.

Flame the mouth of tube again and close the cap.

Flame the mouth of tube again and close the cap.

Sterilize loop

Take a sterile nutrient broth and open the cap.

Inoculated broth is incubated at 37 C for 24 hours to obtain *E. coli* growth in broth.

Broth → Agar Slant Transfer

• E. coli broth

Nutrient broth containing *E. coli* bacteria growth inside.

E. coli culture

• Sterile agar slant

Nutrient agar slant containing no bacteria growth inside.

Inoculation loop is used for transfer

Broth → Agar Slant Transfer

Open the cap of *E. coli* broth and pass the mouth through flame

Sterilize loop

Flame the mouth of tube.

Inoculate 1 loopful *E. coli* sample into sterile Nutrient agar slant.

Hold the cap with little finger and take 1 loopful culture.

close the cap.

Sterilize loop

Flame the mouth of tube

again and close the cap.

Take a sterile nutrient agar slant and open the cap.

Inoculated agar slant is incubated at 37 C for 24 hours to obtain *E. coli* growth in broth.

Broth → Agar Deep Transfer

• *E. coli* broth

Nutrient broth containing *E. coli* bacteria growth inside.

E. coli culture

Inoculation needle is used for transfer

• Sterile agar deep

Nutrient agar deep containing *no* bacteria growth inside.

Broth \rightarrow Agar Deep Transfer

Open the cap of E. coli broth and pass the mouth through flame

(n)

Sterilize needle

Flame the mouth of tube.

incoulating. nieedle:

Hold the cap with little finger and take 1 needle culture.

Soak the needle into deep ³/₄ and pull back upwards.

Flame the mouth of tube again and close the cap.

Sterilize needle

Take a sterile nutrient agar deep and open the cap.

Inoculated agar deep is incubated at 37 C for 24 hours to obtain E. *coli* growth in broth.

Agar Petri Plate → Broth Transfer

• E. coli agar slant

Nutrient agar slant containing *E. coli* bacteria growth inside.

E. coli culture

Inoculation loop is used for transfer Sterile broth

Nutrient broth slant containing **no** bacteria growth inside.

Agar Petri Plate → Broth Transfer

Take a sterile nutrient broth and open the cap.

Inoculated broth is incubated at 37 C for 24 hours to obtain *E. coli* growth in broth.

Flame the mouth of tube.

Inoculate 1 loopful *E. coli* sample into sterile Nutrient broth.

Flame the mouth of tube again and close the cap.

Sterilize loop

Results Evaluation

Transfer Name	Growth indicator	Draw Results
a) Broth \rightarrow Broth	Suspended materials in the broth and turbidity	Draw turbidity in test tubes and suspended materials
b) Broth → Agar Slant	Colonies formed on the surface of Slant	Draw the formed colonies on agar surface
c) Broth → Agar Deep	Colonies formed inside the agar	Draw the formation of growth inside the agar deep
d) Agar Petri Plates → Broth	Suspended materials in the broth and turbidity	Draw turbidity in test tubes and suspended materials

- a) Bacterial growth in broth
- d) Bacterial growth in broth

Bacterial growth (Turbidity)

b) Bacterial growth on slant surface

c) Bacterial growth in Agar deep

Additional Info about growth patterns

Growth patterns on agar slant surface

(b) Some growth patterns in broth media

*Note: Shapes and elevations shown in this diagram are not intended to be matched.