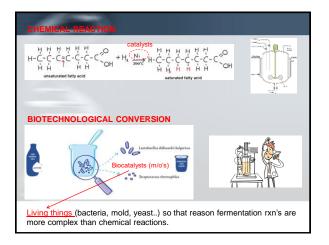
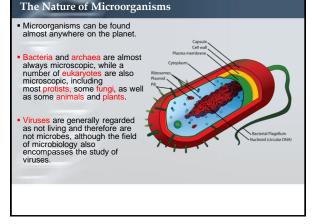
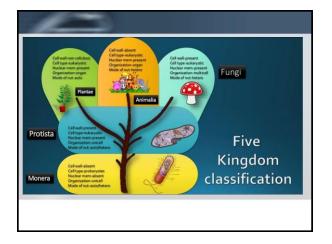

1		
	Exam/Lab	Weight
	1.Midterm	20%
	2.Midterm	20%
	Laboratory	20%
	Final	40%
Research Assistan	ts: Hatice Ne	val Ozbek
Food biotechnolo	gy Bhatia, S.C	C. Woodhead
 Fundamentals of Blackwell; 2nd ed 		

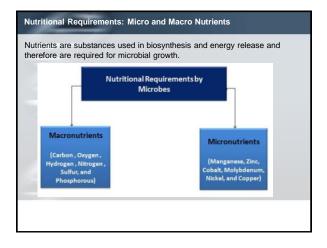
Chapter 1: Biochemical Pathways Chapter 13: Cheese	Chapter 1: Biochemical Pathways	Chapter 13: Cheese
Chapter 2: Microbial kinetics Chapter 14: Cultured dairy products Chapter 3: Bioreactors Chapter 15: Meat products Chapter 4: Sterilization Chapter 10: Pickling Chapter 5: Agitation Chapter11: Vinegar	Chapter 2: Microbial kinetics Chapter 3: Bioreactors Chapter 4: Sterilization Chapter 5: Agitation	Chapter 14: Cultured a Chapter 15: Meat prod Znd Midterm Chapter 10: Pickling
Chapter 6: Inoculum Chapter 15: Tea Chapter 7: Instrumentation Chapter 7: Instrumentation Chapter 8: Downstream processing Chapter 18: Olive fermentation Chapter 9: Beer Chapter 19: Traditional fermented foods Chapter 11: Spirit Chapter 12: Bread	 Chapter 6: Inoculum Chapter 7: Instrumentation Chapter 8: Downstream processing 1st Midterm Chapter 9: Beer Chapter 10:Wine Chapter 11: Spirit Chapter 12: Bread 	Chapter11: Vinegar Chapter 15: Tea Chapter 17: mushroor Chapter 17: mushroor Chapter 18: Olive ferm Chapter 19: Traditiona Final Exam


5: Agitation	- Chapter To. Ficking
6: Inoculum	Chapter11: Vinegar
7: Instrumentation	Chapter 15: Tea
8: Downstream processing	Chapter 17: mushroom
	Chapter 18: Olive fermentation
9: Beer	Chapter 19: Traditional fermented foods
10:Wine	
11: Spirit	
12: Bread	


Chapter 14: Cultured dairy products


Chapter 15: Meat products

Red Yellow Blue Green Brown	Biomedicine, Biopharmaceutics, Diagnostics, Food Biotechnology, Nutrition Science Aquaculture, Coastal and Marine Biotechnology Agricultural Biotechnology, Bioenergetics (Biofuels), Biofertilizers, Bioremediation Geomicrobiology
Blue Green Brown	Aquaculture, Coastal and Marine Biotechnology Agricultural Biotechnology, Bioenergetics (Biofuels), Biofertilizers, Bioremediation Geomicrobiology
Green Brown	Agricultural Biotechnology, Bioenergetics (Biofuels), Biofertilizers, Bioremediation Geomicrobiology
Brown	Agricultural Biotechnology, Bioenergetics (Biofuels), Biofertilizers, Bioremediation Geomicrobiology
	Arid Zone and Desert Biotechnology
Black	Bioterrorism, Biowarfare, Biocriminology, Anticrop Warfare
Violet	Patents, Publications, Inventions, Intellectual Property Rights (Legal, Ethical and Philosophic Issues)
White	Industrial Biotechnology
Gold	Bioinformatics, Nanobiotechnologies
Grey	Environmental (Ecological) Biotechnology
	Composed by: [3; 4]



Microbial Growth Conditions

- 1. Macronutrients
- 2. Micronutrients
- 3. Growth factors
- 4. Environmental factors: T, pH, Oxygen

Microorganism require some elements in large quantities, because they are used to constract carbohydrates, lipids, proteins and nucleic acids. Some other elements are needed in very small amounts and are parts of enzymes and cofactors.

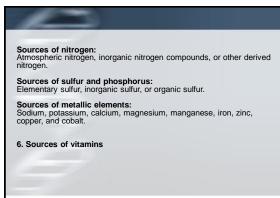
Micro and Macro Nutrients

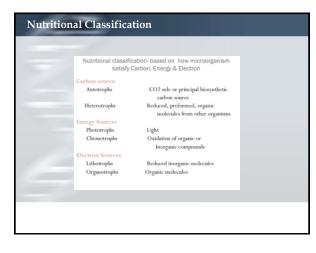
- The microbial cell is made up of several elements such as carbon, oxygen, hydrogen, nitrogen, sulfur, phosphorus, potassium, calcium, magnesium, and iron. These are also known as macro elements or macronutrients because these elements are required in high amounts by the microbes. Among these, C. H. O. N. S. and P. are the major elements required for carbohydrates. Itipids, proteins, and <u>nucleic cards</u>. Apart from these, the other macronutrients are found to have several biological functions. For example Potassium ions (K⁺) involved in the activity of several enzymes, Calcium (Ca²⁺) is an important element of bacterial endospores, Magnesium (Mg²⁺) involved as cofactors of different enzymes, etc.
- On the other hand, several other elements are also required by the microbes on a small level which are known as microelements or micronutrients or traces elements. These nutrients include manganese, zinc, cobalt, molyddenum, nickel, and copper. These are not essential elements for the growth of the microbes but these are involved in biological functions in several ways. For example, zinc ($2n^{21}$) is present at the active site of several enzymes, manganese (Mn^{22}) involved in catalysis of the transfer of phosphate group, Mo (Mo^{21}) is essential for nitrogen fixation, etc.

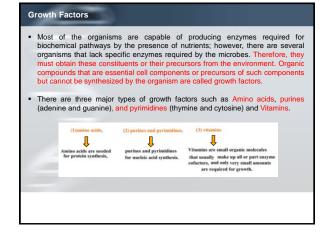
Nutritional Requirements and Classification

All biological systems, from microorganisms to man, share a set of nutritional requirements, which are:

1. Sources of energy:


a. Phototrophs organisms which are capable of <u>employing radiant energy</u>.
 b. Chemotrophs organisms which obtain the energy for their activities and self-synthesis from chemical reactions that can occur in the dark.


2. Sources of carbon:

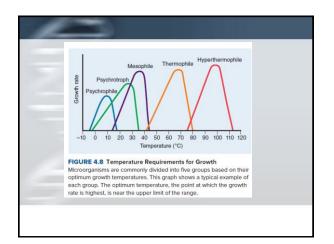

a. Autotrophs organisms which can thrive on an <u>entirely inorganic diet, using CO_2 or <u>carbonates</u> as a sole source of carbon.</u>

b. Heterotrophs organisms which cannot use CO_2 as a sole source of carbon but require, in addition to minerals, one or more <u>organic substances</u>, such as glucose or amino acids, as sources of carbon.

Dr. Ali Coşkun DALGIÇ

4

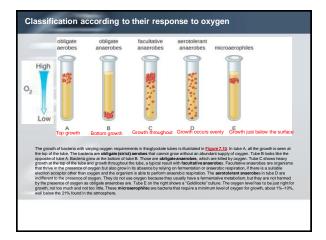
Physical Conditions

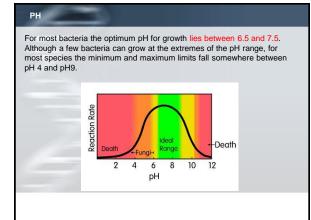

 After determining the proper nutrients for the cultivation of bacteria, it is necessary to determine the physical environment in which the organisms will grow best. Three major physical factors to be taken into consideration are temperature, the gaseous environment, and pH.

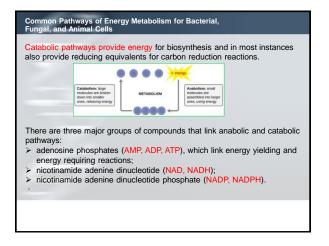
Temperature requirements for growth of Microorganisms

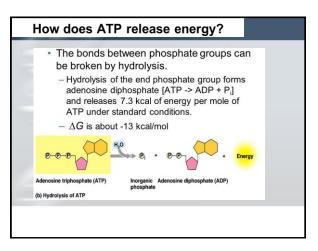
All microorganisms are allocated to a specific group with respect to growth temperature.

- Obligate psychrophiles are defined as those organisms capable of growth at or near 0°C but not at 20°C. Such organisms usually have a maximum growth temperature of 15–17°C.
- Psychrotrophic organisms are capable of growth at or near 0°C but exhibit optimum growth at approximately 25°C and are frequently unable to grow at 30°C.
- Mesophiles exhibit growth from 20–45°C with an optimum growth temperature usually in the range of 30–35°C.
- Thermophiles exhibit growth in the range of 45–65°C.
- Hyperthermophiles are organisms from oceanic thermal vents and hot springs that are restricted to growth temperatures from 70–120°C.
 Hyperthermophiles have not yet been isolated from foods.


Dr. Ali Coşkun DALGIÇ



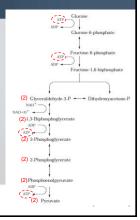

Physical Conditions

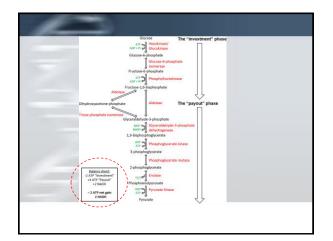

- The principal gases in the cultivation of bacteria are oxygen and carbon dioxide. There are four types of bacteria, according to their response to oxygen:
 - 1. Aerobic bacteria grow in the presence of free oxygen.
 - 2. Anaerobic bacteria grow in the absence of free oxygen.
 - **3.** Facultatively anaerobic bacteria grow in either the absence or the presence of free oxygen.

4. Microaerophilic bacteria grow in the presence of minute quantities of free oxygen.

Glycolysis and the Catabolism of Hexoses

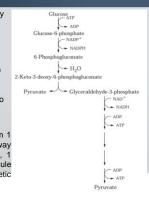
The breakdown of glucose is central for energy and biosynthetic metabolism throughout all domains of life.

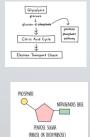

- Glycolysis is the metabolic pathway that converts glucose (C₆H₁₂O₆) into pyruvate (CH₃COCO₂H)
- The free energy released in this process is used to form high-energymolecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH).
- The Embden–Meyerhof–Parnas (EMP) pathway (glycolysis) and the oxidative pentose phosphate (OPP) pathway are the backbones of eukaryotic carbon and energy metabolism. They generate ATP, NAD(P)H, and biosynthetic precursors for amino acids, nucleotides, and fatty acids.
- Prokaryotes, in contrast, exhibit a broad diversity in sugar oxidation pathways. These routes
 differ in ATP yield, in the enzymes and cofactors involved, and in the chemical intermediates
 of the pathways. The most common glycolytic routes in prokaryotes are the EmbdenMeyerhof-Parnas (EMP), Entner–Doudoroff pathway (ED), and oxidative pentose
 phosphate pathways (OPP)


Embden-Meyerhof-Parnas pathway

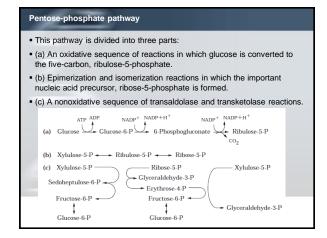
- EMP pathway is the other name of glycolysis. It is named after the three scientists Gustav Embden, Otto Meyerhof, and J. Parnas, who gave the scheme of glycolysis.
- It is the pathway of glucose catabolism. It occurs in the cytoplasm of all living cells, aerobic as well as anaerobic.
 EMP pathway or glycolysis is the primary step of cellular respiration. 1 mol Glucose is partially
- oxidised to 2 mol pyruvate in this process.

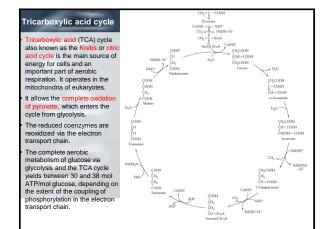
In aerobic organisms, it is converted into acetyl-CoA followed by the Krebs cycle for the complete oxidation of glucose to $\rm CO_2$ and water.

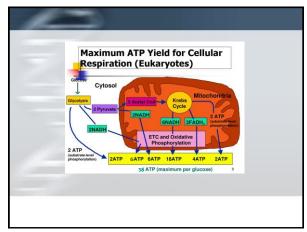

In anaerobic organisms, glycolysis is

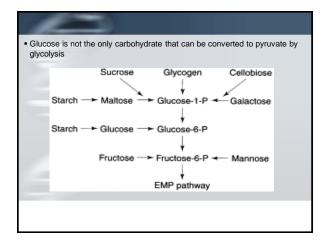

Entner-Doudoroff (ED) pathway

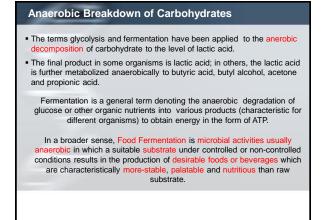
- The Entner–Doudoroff (ED) pathway is present in a number of bacteria where it can be a major pathway of glucose <u>catabolism</u> under aerobic conditions.
- Glucose is degraded in the absence of phosphofructokinase to pyruvate and glyceraldehyde-3-phosphate.
 The latter can be degraded further to pyruvate by the enzymes of glycolysis.
- This pathway is less efficient. From 1 molecule of glucose, the ED pathway produces 1 molecules of <u>NADPH</u>, 1 molecule of <u>NADH/H</u> and 1 molecule of <u>ATP</u> for use in cellular biosynthetic reactions.

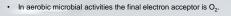




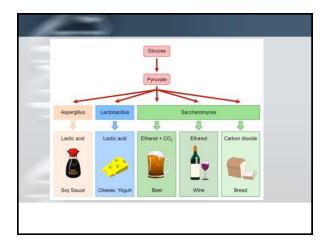

 The pentose phosphate is a metabolic pathway parallel to glycolysis. It generates NADPH and pentoses (5-carbon sugars) as well as ribose 5-phosphate, a precursor for the synthesis of nucleotides that make up DNA and RNA.

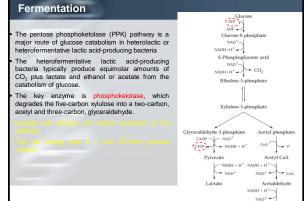



 While the pentose phosphate pathway does involve oxidation of glucose, its primary role is anabolic rather than catabolic. The pathway is especially important in red blood cells (erythrocytes).

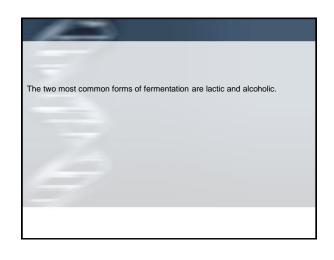


Food Fermentation




- In anaerobic microbial activities final electron acceptor can be organic compounds.
- · Food fermentations are generally an anaerobic fermentation.

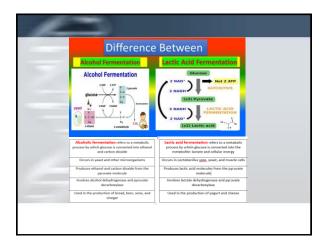
Finally, fermented foods and beverages are defined as "foods made through desired microbial growth and enzymatic conversions of food components



Etha

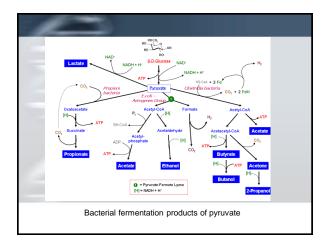
 Homofermentative bacteria are a type of lactic acid bacteria that produce only lactic acid as a primary by-product in glucose fermentation. In biochemistry, homofermentative bacteria convert glucose molecules into two lactic acid molecules.

 Heterofermentative bacteria are a type of lactic acid bacteria that produce ethanol/acetic acid and CO₂ in addition to lactic acid as by-products in glucose fermentation.



Lactic Fermentation

 A familiar fermentation product is lactic acid, which is derived from the reduction of pyruvate with NADH to lactate by lactate dehydrogenase. A further means of energy conservation observed in several homolactic fermenting organisms, but which is also found in other organisms, is the generation of a proton motive force in association with the excretion of lactic acid out of the cells via a secondary transport mechanism.


Alcoholic Fermentation

 The formation of ethanol as the sole organic fermentation product is a two-step process. The first step is the decarboxylation of pyruvate to acetaldehyde plus CO₂ by pyruvate decarboxylase. NAD is recycled in the next step, the NADH-dependent reduction of acetaldehyde by alcohol dehydrogenase. Organisms possessing pyruvate decarboxylase are capable of producing ethanol as a major fermentation product.

This anaerobic metabolism is typical of Py Acetyl-CoA CO2 the genus Clostridium. Pi Acetyl-P 2H Ace Various fermentation Acetyl-CoA ATP products are formed by rcetyl-CoA — 2H etic acid reduction using NADH 2H/ derived from glycolysis. - CO2 B-Hydroxybutyryl-CoA Ethanol The proportion of each Crotonyl-CoA 2H product formed is dependent on the 2H ropanol fermentation conditions. Butyryl-CoA 2H Butyraldehyde 2H Butyric acid Butanol

Butanol/acetone fermentation

