2019-2020 1st Semester

Lecturers
Dr. Derya KOÇAK YANIK (Food Engineering Department) (Lecture Coordinator !!!!!)
Dr. Hasene KESİN (Food Engineering Department)
Dr. Fatih BALCI (Energy Systems Engineering)
Dr. Halil Ibrahim IÇOĞLU (Department of Metallurgical and Materials Engineering)
Dr. Abdulcabbar YAVUZ (Department of Metallurgical and Materials Engineering)
Dr. Abdulaziz KAYA (Department of Metallurgical and Materials Engineering)

Text book:
GENERAL CHEMISTRY
Principles and Modern Applications
Eleventh Edition
Author team: PETRUCCI HERRING MADURA BISSONNETTE

Reference Books:
CHEMISTRY: THE CENTRAL SCIENCE
Author team: BROWN - LEMAY - BURSTEN - MURPHY

Exam	Weight
1.Midterm | 30%
2.Midterm | 30%
Final | 40%

Nonattandance Limit ≤ 30 % !!!!!
Chapters:
- Chap 1: Matter–Its Properties And Measurement
- Chap 2: Atoms And The Atomic Theory
- Chap 3: Chemical Compounds
- Chap 4: Chemical Reactions
- Chap 6: Gases
- Chap 7: Thermochemistry
- Chap 12: Intermolecular Forces: Liquids And Solids
- Chap 13: Spontaneous Change: Entropy And Gibbs Energy
- Chap 14: Solutions And Their Physical Properties
- Chap 15: Principles Of Chemical Equilibrium
- Chap 16: Acids and Bases

Chapter 1
Matter–Its Properties And Measurement

Content of the Chapter
- Properties of Matter
- Classification of Matter
- Measurement of Matter: SI (Metric) Units
- Density and Percent Composition: Their Use in Problem Solving
Chemistry:

The study of matter, its composition and the changes it undergoes.

Matter:
Anything that has mass and takes up space.

Matter = combination of elements

- Atoms are the smallest building blocks of matter.

➢ Each different type of atom is the building block of a different chemical element.
A compound is made of two or more different kinds of elements.

In a molecule two or more atoms are joined in definite arrangement.

Classification of Matter

- According to State of Matter
- According to Composition

1. According to States of Matter

- **Gas**
 - Molecules apart from each other
 - Move rapidly
 - Colliding with others and wall of container
 - Compressible to smaller volume
 - Expand to larger volumes

- **Liquid**
 - Packed closely together
 - Still move rapidly
 - Its own volume is independent than container
 - No specific shape

- **Crystalline solid**
 - Tightly packed
 - Indefinite arrangement
 - definite shape
 - Definite volume

NOTE! Neither liquids nor solids can not be compressed to any appreciable extent
2. According to Composition

Properties of Matter

- Physical Properties:
 - Must be observed without changing composition.
 - Boiling point, density, mass, volume, color, odor, etc.
- Chemical Properties:
 - Can only be observed when a compound/element change its composition.
 - Flammability, corrosiveness, reactivity with acid, etc.
- Intensive Properties:
 - Independent of the amount of the matter that is present.
 - Density, boiling point, color, etc.
- Extensive Properties:
 - Dependent upon the amount of the matter present.
 - Mass, volume, energy, etc.

Changes of Matter

- Physical Changes:
 - Changes in matter that do not change the composition of a substance.
 - Changes of state, temperature, volume, etc.
- Chemical Changes:
 - Changes that result in new substances.
 - Combustion, oxidation, decomposition, etc.
 Example: \[\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} \]
In the course of a chemical reaction, the reacting substances are converted to new substances.

Example: Which of the following is physical or chemical?

a) Evaporation of alcohol
b) Burning of lamp oil
c) Bleaching of hair with hydrogen peroxide
d) Forming of frost on a cold night
Two common unit systems are available:

- English System (in USA)
- Metric System (in the rest)

Système International d’Unités (International System of Units): is is abbreviated as *SI Unit*, based on metric unit system. Scientists use this system.

Units of Measurement

SI Units

<table>
<thead>
<tr>
<th>Physical Quantity</th>
<th>Name of Unit</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>Kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Length</td>
<td>Meter</td>
<td>m</td>
</tr>
<tr>
<td>Time</td>
<td>Second</td>
<td>s</td>
</tr>
<tr>
<td>Temperature</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>Mole</td>
<td>mol</td>
</tr>
<tr>
<td>Electric current</td>
<td>Ampere</td>
<td>A</td>
</tr>
</tbody>
</table>

Metric System

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Abbreviation</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giga</td>
<td>G</td>
<td>10^9</td>
<td>1 gigameter (Gm) = 1×10^9 m</td>
</tr>
<tr>
<td>Mega</td>
<td>M</td>
<td>10^6</td>
<td>1 megameter (Mm) = 1×10^6 m</td>
</tr>
<tr>
<td>Kilo</td>
<td>k</td>
<td>10^3</td>
<td>1 kilometer (km) = 1×10^3 m</td>
</tr>
<tr>
<td>Deci</td>
<td>d</td>
<td>10^{-1}</td>
<td>1 decimeter (dm) = 0.1 m</td>
</tr>
<tr>
<td>Centi</td>
<td>c</td>
<td>10^{-2}</td>
<td>1 centimeter (cm) = 0.01 m</td>
</tr>
<tr>
<td>Milli</td>
<td>m</td>
<td>10^{-3}</td>
<td>1 millimeter (mm) = 0.001 m</td>
</tr>
<tr>
<td>Micro</td>
<td>μ</td>
<td>10^{-6}</td>
<td>1 micrometer (μm) = 1×10^{-6} m</td>
</tr>
<tr>
<td>Nano</td>
<td>n</td>
<td>10^{-9}</td>
<td>1 nanometer (nm) = 1×10^{-9} m</td>
</tr>
<tr>
<td>Pico</td>
<td>p</td>
<td>10^{-12}</td>
<td>1 picometer (pm) = 1×10^{-12} m</td>
</tr>
<tr>
<td>Femto</td>
<td>f</td>
<td>10^{-15}</td>
<td>1 femtometer (fm) = 1×10^{-15} m</td>
</tr>
</tbody>
</table>

This is the Greek letter mu (pronounced “mew”).
Mass & Weight

- **Mass** is the quantity of matter within it.
- **Weight** is a measure of gravitational pull on the matter.

- **My WEIGHT on Earth is around 560N**
- **My WEIGHT on the moon is around 90N**
- **My MASS is always 56kg!!**

Temperature

- Temperature measures the hotness/coldness of objects.
- Temperature determines the direction of heat flow.

Temperature Scales

- **K = °C + 273.15**
- **°F = 9/5(°C) + 32**
- **°C = 5/9(°F-32)**
Question: A recipe in an American cookbook calls for roasting a cut of meat at 350 °F. What is this temperature on the Celsius scale?

Volume

- The most commonly used metric units for volume are the liter (L) and the milliliter (mL).
 - A liter is a cube 1 dm (10 cm) long on each side.
 - A milliliter is a cube 1 cm long on each side.

Density:

Physical property of a substance

Intensive.

\[d = \frac{M}{V} \]

- g/cm\(^3\) or g/mL are generally used as density units.
- Temperature must be given together with density because volume of substances change with heating or cooling.

Question: What is the mass of a cube of osmium that is 1.25 inches on each side? (density of osmium = 22.59g/cm\(^3\))

Question: To determine the density of trichloroethylene, a liquid used to degrease electronic components, a flask is first weighed empty (108.6 g). It is then filled with 125 mL of the trichloroethylene to give a total mass of 291.4 g. What is the density of trichloroethylene in grams per milliliter?
Density of selected substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0.001</td>
</tr>
<tr>
<td>Balsa wood</td>
<td>0.16</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.79</td>
</tr>
<tr>
<td>Water</td>
<td>1.00</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>1.09</td>
</tr>
<tr>
<td>Table sugar</td>
<td>1.59</td>
</tr>
<tr>
<td>Table salt</td>
<td>2.16</td>
</tr>
<tr>
<td>Iron</td>
<td>7.9</td>
</tr>
<tr>
<td>Gold</td>
<td>19.32</td>
</tr>
</tbody>
</table>

Percent Composition as a Conversion Factor

- A common way of referring to composition is through percentages.
- Percent (per centum) is the Latin for per (meaning for each) and centum (meaning 100). Thus, percent is the number of parts of a constituent in 100 parts of the whole.
- To say that a seawater sample contains 3.5% sodium chloride by mass means that there are 3.5 g of sodium chloride in every 100 g of seawater.

Example: What is the percent composition of H₂O?

Example: Calculate the percentage of nitrogen, by mass, in Ca(NO₃)₂.

4A. How many kilograms of ethanol are present in 25 L of a gasohol solution that is 90% gasoline to 10% ethanol by mass? The density of gasohol is 0.71 g/mL.