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2.8.1–Ethernet Packet Format
 Here is the format of a typical Ethernet packet (DIX specification); it is still used for

newer, faster Ethernets.

 The destination and source addresses are 48-bit quantities; the type is 16 bits, the
data length is variable up to a maximum of 1500 bytes, and the final CRC (cyclic
redundancy check) checksum is 32 bits. The checksum is added by the Ethernet
hardware, never by the host software. There is also a preamble, not shown: a block of
1 bits followed by a 0, in the front of the packet, for synchronization. The type field
identifies the next higher protocol layer; a few common type values are 0x0800 = IP,
0x8137 = IPX, 0x0806 = ARP.

Ethernet Packet Format



2.8.1 – Ethernet Packet Format
 Each Ethernet card has a (hopefully unique) physical address in ROM; by default any

packet sent to this address will be received by the board and passed up to the host
system. Packets addressed to other physical addresses will be seen by the card, but
ignored (by default). All Ethernet devices also agree on a broadcast address of all 1’s:
a packet sent to the broadcast address will be delivered to all attached hosts.

 It is sometimes possible to change the physical address of a given card in software. It
is almost universally possible to put a given card into promiscuous mode, meaning that
all packets on the network, no matter what the destination address, are delivered to
the attached host.



2.8.2–Time Slot and Collisions
 The diameter of an Ethernet is the maximum distance between any pair of stations.

The actual total length of cable can be much greater than this, if, for example, the
topology is a “star” configuration. The maximum allowed diameter, measured in bits,
is limited to 232 (a sample “budget” for this is below). This makes the round-trip-time
464 bits. As each station involved in a collision discovers it, it transmits a special jam
signal of up to 48 bits. These 48 jam bits bring the total above to 512 bits, or 64 bytes.
The time to send these 512 bits is the slot time of an Ethernet; time intervals on
Ethernet are often described in bit times but in conventional time units the slot time is
51.2 μsec (for 10Mbps Ethernet system).

 The value of the slot time determines several subsequent aspects of Ethernet. If a 
station has transmitted for one slot time, then no collision can occur (unless there is a 
hardware error) for the remainder of that packet. This is because one slot time is 
enough time for any other station to have realized that the first station has started 
transmitting, so after that time they will wait for the first station to finish. Thus, after 
one slot time a station is said to have acquired the network. The slot time is also used 
as the basic interval for retransmission scheduling.



2.8.2–Time Slot and Collisions
 Conversely, a collision can be received, in principle, at any point up until the end of

the slot time. As a result, Ethernet has a minimum packet size, equal to the slot time,
i.e 64 bytes (or 46 bytes in the data portion). A station transmitting a packet this size
is assured that if a collision were to occur, the sender would detect it (and be able to
apply the retransmission algorithm). Smaller packets might collide and yet the sender
not know it, ultimately leading to greatly reduced throughput.

 If we need to send less than 46 bytes of data (for example, a 40-byte TCP ACK packet),
the Ethernet packet must be padded out to the minimum length. As a result, all
protocols running on top of Ethernet need to provide some way to specify the actual
data length, as it cannot be inferred from the received packet size.



2.8.2 Time Slot and Collisions
 As a specific example of a collision occurring as late as possible, consider the diagram

below. A and B are 5 units apart, and the bandwidth is 1 byte/unit. A begins sending
“hello world” at T=0; B starts sending just as A’s message arrives, at T=5. B has
listened before transmitting, but A’s signal was not yet evident. A doesn’t discover the
collision until 10 units have elapsed, which is twice the distance.



2.8.2–Time Slot and Collisions
 Implicit in the delay budget table above is the “length” of a bit. The

speed of propagation in copper is about 0.77c, where c=3x10^8 m/sec =
300 m/μs is the speed of light in vacuum. So, in 0.1 microseconds (the
time to send one bit at 10 Mbps), the signal propagates approximately
0.77xcx10^-7 = 23 meters.

 Ethernet packets also have a maximum packet size, of 1500 bytes. This
limit is primarily for the sake of fairness, so one station cannot unduly
monopolize the cable (and also so stations can reserve buffers
guaranteed to hold an entire packet). At one time hardware vendors
often marketed their own incompatible “extensions” to Ethernet which
enlarged the maximum packet size to as much as 4KB. There is no
technical reason, actually, not to do this, except compatibility.



2.8.3–Exponential Backoff Algorithm
 Whenever there is a collision the exponential backoff algorithm – operating at the MAC layer – is

used to determine when each station will retry its transmission. Backoff here is called
exponential because the range from which the backoff value is chosen is doubled after every
successive collision involving the same packet. Here is the full Ethernet transmission algorithm,
including backoff and retransmissions:

 1. Listen before transmitting (“carrier detect”)

 2. If line is busy, wait for sender to stop and then wait an additional 9.6 microseconds (96 bits).
One consequence of this is that there is always a 96-bit(double of jam bits) gap between
packets, so packets do not run together.

 3. Transmit while simultaneously monitoring for collisions

 4. If a collision does occur, send the jam signal, and choose a backoff time as follows: For
transmission N, 1൑N൑10 (N=0 represents the original attempt), choose k randomly with 0 ൑ k <
2^N. Wait k slot times (kx51.2 μsec, minimum size of ethernet frame = 64 bytes = 512 bits. Time
taken to transmit a minimum size ethernet frame on a 10Mbits link = 512/10,000,000 = 51.2
microseconds.). Then check if the line is idle, waiting if necessary for someone else to finish,
and then retry step 3. For 11൑N൑15, choose k randomly with 0 ൑ k < 1024 (= 210)

 5. If we reach N=16 (16 transmission attempts), give up.



2.8.3–Exponential Backoff Algorithm
 If an Ethernet sender does not reach step 5, there is a very high

probability that the packet was delivered successfully. Exponential
backoff means that if two hosts have waited for a third to finish and
transmit simultaneously, and collide, then when N=1 they have a 50%
chance of recollision; when N=2 there is a 25% chance, etc.

 When N൒10 the maximum wait is 52 milliseconds; without this cutoff
the maximum wait at N=15 would be 1.5 seconds. As indicated above in
the minimum-packet-size discussion, this retransmission strategy
assumes that the sender is able to detect the collision while it is still
sending, so it knows that the packet must be resent.



2.8.3–Exponential Backoff Algorithm

Exponential Backoff Algorithm



2.8.3–Exponential Backoff Algorithm
 In the following diagram is an example of several stations attempting

to transmit all at once, and using the above transmission/backoff
algorithm to sort out who actually gets to acquire the channel.

 We assume we have five prospective senders A1, A2, A3, A4 and A5, all
waiting for a sixth station to finish. We will assume that collision
detection always takes one slot time (it will take much less for nodes
closer together) and that the slot start-times for each station are
synchronized; this allows us to measure time in slots. A solid arrow at
the start of a slot means that sender began transmission in that slot; a
red X signifies a collision. If a collision occurs, the backoff value k is
shown underneath. A dashed line shows the station waiting k slots for
its next attempt.



2.8.3–Exponential Backoff Algorithm
 At T=0 we assume the transmitting station finishes, and all

the Ai transmit and collide. At T=1, then, each of the Ai has
discovered the collision; each chooses a random k<2. Let us
assume that A1 chooses k=1, A2 chooses k=1, A3 chooses
k=0, A4 chooses k=0, and A5 chooses k=1.

 Those stations choosing k=0 will retransmit immediately, at
T=1. This means A3 and A4 collide again, and at T=2 they
now choose random k<4. We will Assume A3 chooses k=3 and
A4 chooses k=0; A3 will try again at T=2+3=5 while A4 will
try again at T=2, that is, now.

 At T=2, we now have the original A1, A2, and A5
transmitting for the second time, while A4 trying again for
the third time. They collide. Let us suppose A1 chooses k=2,
A2 chooses k=1, A5 chooses k=3, and A4 chooses k=6 (A4 is
choosing k<8 at random). Their scheduled transmission
attempt times are now A1 at T=3+2=5, A2 at T=4, A5 at T=6,
and A4 at T=9.

 At T=3, nobody attempts to transmit. But at T=4, A2 is the
only station to transmit, and so successfully seizes the
channel. By the time T=5 rolls around, A1 and A3 will check
the channel, that is, listen first, and wait for A2 to finish. At
T=9, A4 will check the channel again, and also begin waiting
for A2 to finish.



2.9 Ethernet Switches
 Switches join separate physical Ethernets (or sometimes Ethernets

and other kinds of networks). A switch has two or more Ethernet
interfaces; when a packet is received on one interface it is
retransmitted on one or more other interfaces. Only valid packets
are forwarded; collisions (possible) are not propagated. The term
collision domain is sometimes used to describe the region of an
Ethernet in between switches; a given collision propagates only
within its collision domain. All the collision-detection rules,
including the rules for maximum network diameter, apply only to
collision domains, and not to the larger “virtual Ethernets” created
by stringing collision domains together with switches.



2.9.1 Datagram Forwarding
 In the datagram-forwarding model of packet

delivery, packet headers contain a destination
address. It is up to the intervening switches or
routers to look at this address and get the packet
to the correct destination.

 In the diagram beside, switch S1 has interfaces 0, 1
and 2, and S2 has interfaces 0,1,2,3. If A is to send
a packet P to B, S1 must know that P must be
forwarded out interface 2 and S2 must know P
must be forwarded out interface 3. In datagram
forwarding this is achieved by providing each
switch with a forwarding table of
xdestination,next_hopy pairs. When a packet
arrives, the switch looks up the destination address
(presumed globally unique) in this table, and finds
the next_hop information: the immediate-neighbor
address to which – or interface by which–the
packet should be forwarded in order to bring it one
step closer to its final destination. Table for S1 Table for S2



2.9.1 Datagram Forwarding
 For human readers, using neighbors in the

next_hop column is usually much more readable.
S1’s table can now be written as follows (with
consolidation of the entries for B, D and E)

 By convention, switching devices acting at the
LAN layer and forwarding packets based on the
LAN address are called switches (or, in earlier
days, bridges), while such devices acting at the IP
layer and forwarding on the IP address are called
routers. Datagram forwarding is used both by
Ethernet switches and by IP routers, though the
destinations in Ethernet forwarding tables are
individual nodes while the destinations in IP
routers are entire networks (that is, sets of
nodes).

Table for S1



2.9.1 Datagram Forwarding
 In IP routers within end-user sites it is

common for a forwarding table to include a
catchall default entry, matching any IP
address that is nonlocal and so needs to be
routed out into the Internet at large. Unlike
the consolidated entries for B, D and E in the
table above for S1, which likely would have
to be implemented as actual separate
entries, a default entry is a single record
representing where to forward the packet if
no other destination match is found. Here is
a forwarding table for S1, above, with a
default entry replacing the last three
entries:

Table for S1 forwarding with IP Router



2.10 More about Packages
 When a router or switch receives a packet, it (generally) reads in

the entire packet before looking at the header to decide to what
next node to forward it. This is known as store-and-forward, and
introduces a forwarding delay equal to the time needed to read in
the entire packet. For individual packets this forwarding delay is
hard to avoid (though some switches do implement cut-through
switching to begin forwarding a packet before it has fully arrived),
but if one is sending a long train of packets then by keeping
multiple packets en route at the same time one can essentially
eliminate the significance of the forwarding delay;



2.10 More about Packages
 Bandwidth delay, is sending 1000 Bytes at 20 Bytes/millisecond will take 50 ms. This is a per-link 

delay.

 Propagation delay due to the speed of light. For example, if you start sending a packet right now
on a 5000-km cable across the US with a propagation speed of 200 m/μsec (= 200 km/ms, about
2/3 the speed of light in vacuum), the first bit will not arrive at the destination until 25 ms later.
The bandwidth delay then determines how much after that the entire packet will take to arrive.

 Store-and-forward(Transmission) delay, equal to the sum of the bandwidth delays out of each
router along the path

 Queuing delay, or waiting in line at busy routers. At bad moments this can exceed 1 sec, though
that is rare. Generally it is less than 10 ms and often is less than 1 ms. Queuing delay is the only
delay component amenable to reduction through careful engineering.

 Processing Delay depends on amount of data to process, software implementation, computer
hardware, and other activities of computer.

Often very small compared to transmission and propagation delay
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Delay Example
Ex: R is an intermediate point (router, repeater etc.) between A and B. All the
connections are made of copper whose transmission speed is 0.7c. If 100B of digital data
wants to be transmitted by using 8Mb/s technology. What will be the total time for the
data to arrive point B? (Unmentioned delays are assumed to be zero)

A-------------------R---------------B 𝑇௧௢௧௔௟ ൌ2×𝑇஻ௐ ൅ 2×𝑇௣௥௢௣

100km 100km

𝑇஻ௐ ൌ ଵ଴଴ൈ଼
଼ൈଵ଴ల ൌ 100μ𝑠    𝑇௣௥௢௣ ൌ ଵ଴଴ൈଵ଴య

ଶ,ଵൈଵ଴ఴ ൌ 476μ𝑠

𝑇௧௢௧௔௟ ൌ2× 100μ𝑠 ൅ 2× 476μ𝑠 ൌ 𝟏𝟏𝟓𝟐𝝁𝒔



2.11 Ethernet Learning Algorithm
 Ethernet switches use datagram forwarding. The trick is to build

their forwarding tables without any cooperation from ordinary,
non-switch hosts. Switches start out with empty forwarding tables,
and build them through a learning process. If a switch does not
have an entry for a particular destination, it will fall back to
broadcast: it will forward the packet out every interface other
than the one on which the packet arrived. The availability of
fallback-to-broadcast is what makes it possible for Ethernet
switches to learn their forwarding tables without any switch-to-
switch or switch-to-host communication or coordination.



2.11 Ethernet Learning Algorithm
 A switch learns address locations as follows: for each interface,

the switch maintains a table of physical MAC (Media Access
Control) addresses that have appeared as source addresses in
packets arriving via that interface. The switch thus knows that to
reach these addresses, if one of them later shows up as a
destination address, the packet needs to be sent only via that
interface. Specifically, when a packet arrives on interface I with
source address S and destination unicast address D, the switch
enters ൏S,I൐ into its forwarding table.



2.11 Ethernet Learning Algorithm
 To actually deliver the packet, the switch also looks up D in the

forwarding table. If there is an entry <D,J> with J്I that is, D is known
to be reached via interface J – then the switch forwards the packet out
interface J. If J=I, that is, the packet has arrived on the same interfaces
by which the destination is reached, then the packet does not get
forwarded at all; it presumably arrived at interface I only because that
interface was connected to a shared Ethernet segment that also either
contained D or contained another switch that would bring the packet
closer to D. If there is no entry for D, the switch must forward the packet
out all interfaces J with J ് I; this represents the fallback to broadcast.
After a short while, this fallback to broadcast is needed less and less
often, as switches learn where the active hosts are located. (However, in
some switch implementations, forwarding tables also include
timestamps, and entries are removed if they have not been used for, say,
five minutes.)



2.11 Ethernet Learning Algorithm
 If the destination address D is

the broadcast address, or, for
many switches, a multicast
address, broadcast is
required. Some switches try
to keep track of multicast
groups, so as to forward
multicast traffic only out
interfaces with known
subscribers;

 In the diagram above, each switch’s tables 
are indicated by listing near each interface 
the destinations (identified by MAC 
addresses) known to be reachable by that 
interface. The entries shown are the result 
of the following packets:

 • A sends to B; all switches learn where A is

 • B sends to A; this packet goes directly to 
A; only S3, S2 and S1 learn where B is

 • C sends to B; S4 does not know where B is 
so this packet goes to S5; S2 does know 
where B is so the packet does not go to S1.


