EEE 432 Introduction to Data Communications

Asst. Prof. Dr. Mahmut AYKAÇ

DATA COMMUNICATIONS AND NETWORKS

Course Information

- **1.** Data Communications and Networks
- 2. Data Transmission
- 3. Transmission Media
- 4. Signal Encoding Techniques
- 5. Digital Data Communication Techniques
- 6. Multiplexing
- 7. Networking and Protocol Architectures

- 8. Switching
- 9. Routing in Switched Networks
- 10. LANs and WANs
- 11. Ethernet
- 12. The Internet

Reference Books & Grading

- 1. Data Communications and Networking, Behrouz A. Forouzan, Fourth Edition.
- 2. Data and Computer Communications, William Stallings, Eighth Edition
- 3. Computer Networking A Top- Down Approach, James F. Kurose, Keith W. Ross, Sixth Edition

Score = 1st Midterm Exam 30% + 2nd Midterm Exam 30% + Final Exam 40%

What Is Data Communications?

- When we communicate we are sharing information
- Local sharing, e.g. face-to-face
- >Remote sharing, e.g. over some distance (telecommunication)
- **Data:** Information being shared, e.g. text, numbers, images, audio, video
- Data Communications: Exchange of data between two (or more) devices via some transmission medium such as a wire cable or air

What Is Data Communications?

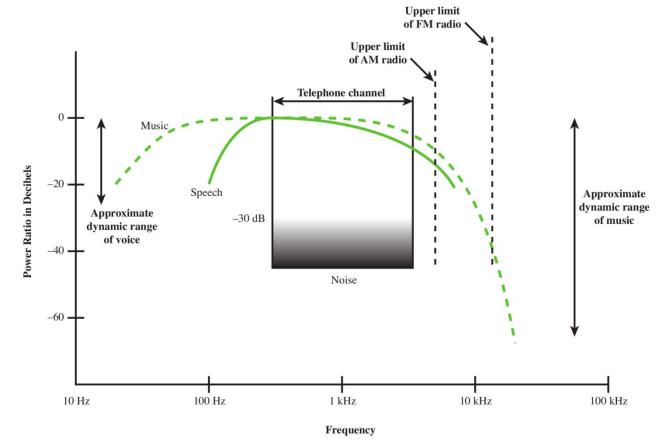
• A data communications system has five components;

- **1. Message.** The message is the information (data) to be communicated. Popular forms of information include text, numbers, pictures, audio, and video.
- 2. Sender. The sender is the device that sends the data message. It can be a computer, workstation, telephone handset, video camera, and so on.
- **3. Receiver.** The receiver is the device that receives the message. It can be a computer, workstation, telephone handset, television, and so on.
- 4. **Transmission Medium.** The transmission medium is the physical path by which a message travels from sender to receiver. Some examples of transmission media include twisted-pair wire, coaxial cable, fiber-optic cable, and radio waves.
- 5. Protocol. A protocol is a set of rules that govern data communications. It represents an agreement between the communicating devices. Without a protocol, two devices may be connected but not communicating, just as a person speaking French cannot be understood by a person who speaks only Japanese.

Analog and Digital Data

• Data: Entities that convey meaning or information

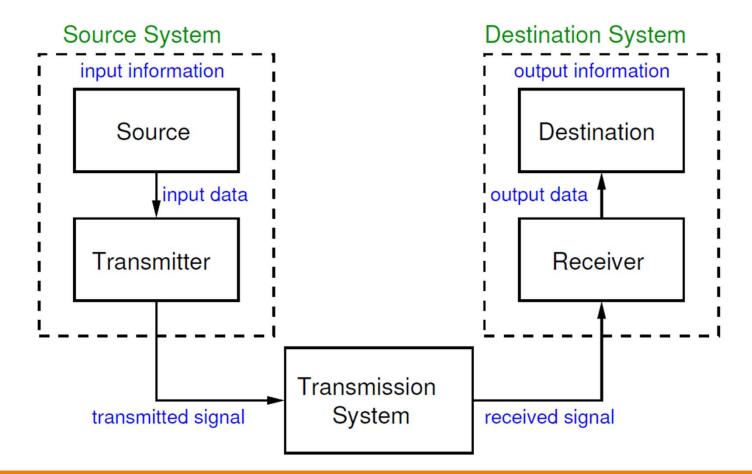
> Analog Data


- Continuous varying over time
- Voice, music, video, sensor data, photos . . .

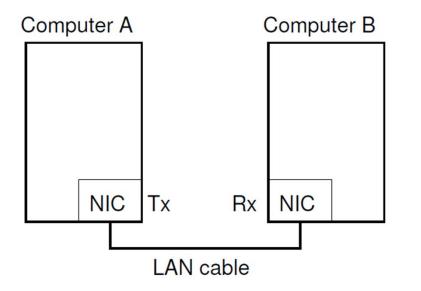
Digital Data

- Discrete values over time
- Text, integers, digitized analog data
- Digitizing involves taking samples of analog data (discretization) and mapping those samples to numbers (quantization)

Example of Analog Data: Audio

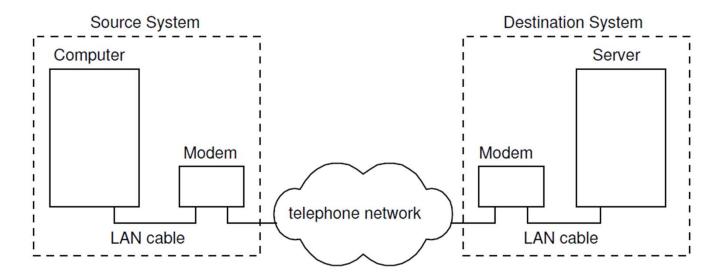

Acoustic Spectrum of Speech and Music

Example of Digital Data: Text


		First 3 bits							
	000	001	010	011	100	101	110	111	
0000	NUL	DLE	SP	0	@	Р	6	р	
0001	SOH	DC1	!	1	А	Q	a	q	
0010	STX	DC2		2	В	R	b	r	
0011	ETX	DC3	#	3	С	S	С	S	
0100	EOT	DC4	\$	4	D	Т	d	t	
0101	ENQ	NAK	%	5	Е	U	е	u	
0110	ACK	SYN	&	6	F	V	f	V	
<u>양</u> 0111	BEL	ETB	,	7	G	W	g	W	
1000 Last 4	BS	CAN	(8	Н	Х	h	X	
^w 1001	HT	EM)	9	I	Y	i	У	
1010	LF	SUB	*	:	J	Z	j	Z	
1011	VT	ESC	+	;	K	[k	{	
1100	FF	FS	,	<	L	\			
1101	CR	GS	_	=	М]	m	}	
1110	SO	RS	•	>	N	۸	n	~	
1111	SI	US	/	?	0	_	0	DEL	

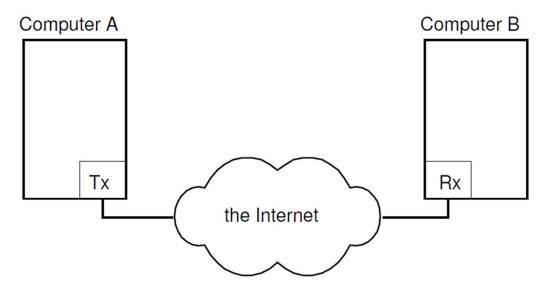
A Model of Communication Systems

A Model of Communication Systems Aim: Transfer information from source to destination **Source:** Device that generates data to be transmitted **Transmitter:** Converts data from source into transmittable signals **Transmission System:** Carries data from source to destination > Maybe simple as a single link/cable > Or a complex network, e.g. the Internet **Receiver:** Converts received signal into data **Destination:** Takes and uses incoming data


Example: Computer to Computer

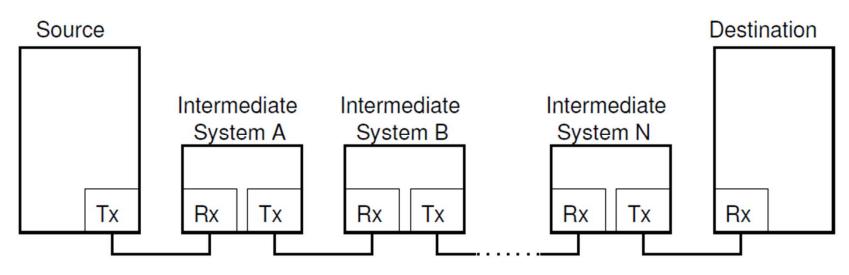
NIC: Network Interface Card NIC can be such as Ethernet or Wi-fi card.

- > Transmitter (Tx) is built into source computer
- > Receiver (Rx) is built into destination computer
- > Transmission System is single link between two computers


Example: Old Dialup Connection

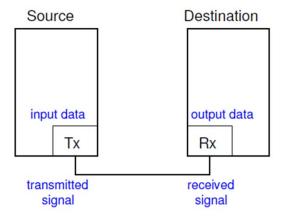
Source and transmitter are separate devices (similar at destination)

> Transmission system is telephone network

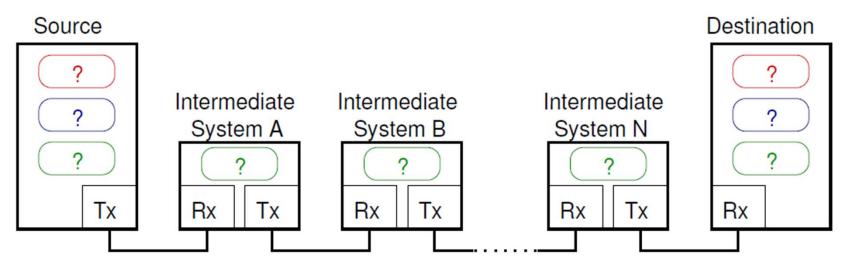

Example: Communications via the Internet

Source and transmitter may support different technologies

> Transmission system is the Internet


General Model for Communications via a Network

Source system generates data


- > Intermediate systems receive signal from previous system and then transmit to next system
- Destination system receives and processes the data
- Source and destination are connected via multiple transmission systems (or links) to form a network

Challenges with Link Communications

- How to convert information into transmittable signals?
- What are the characteristics of signals?
- What transmission media to use?
- How to efficiently encode data as signals?
- How to know who is at other end?
- How to deal with errors?
- How to share media amongst two or more transmitters?

Challenges with Networked Communications

- How do intermediate systems receive/send data?
- How to select which intermediate systems to send via?
- > What happens if failures within intermediate systems?
- How to create applications without knowing the details of underlying network and technologies?

How big is a ...

- > Web page?
- Email?
- Photo?
- Song?
- > Audio CD?
- > TV show?
- Movie?

Classify Types of Information

Information may be in analog or (more commonly) digital form

- > Audio: Voice calls, radio, music
- Video: Video conference, video streams

Data:

Early: Signalling, fax, SMS, . . .

Internet: Messaging (email, instant), web browsing, remote login, database, business-specific apps, monitoring and control systems, . . .

Effective Data Communications

- > **Delivery:** The data must be delivered to the correct destination
- Accuracy: The data received must be accurate representation of the data sent.
- Timeliness: The data should be delivered within a reasonable time

➢ Jitter: The variation in the packet arrival time. For example; If some of the packets arrive with 3ms delay and others with 4ms delay, an uneven quality in the video is the result.

Types of Internet Applications Traditional Internet-Based Applications

- > File transfer, email, web browsing, remote login, database
- Accuracy is most important

Multimedia or Real-Time Applications

- > Audio/video streaming, voice/video calls, gaming, collaborations
- Timeliness is most important