
EEE 204
Microcomputer

Organization

CHAPTER 3

Asst. Prof. Dr Mahmut AYKAÇ

2

3.5 MSP430 Memory Organization
Big Endian: In the big endian convention, data is stored with the most significant
byte in the lowest address and the least significant byte in the highest address.

Little Endian: In the little endian convention, data is stored with the least significant
byte in the lowest address and the most significant byte in the highest address.

In this example, a 16-bit
of data (342BH) is
intended to be saved to
the memory location
4300H in little and big
endian conventions

In this example, a 32-bit
of data (9A267EF0H) is
intended to be saved to
the memory location
4300H in little and big
endian conventions

3

3.5 MSP430 Memory Organization
Most hardware memory words nowadays are one byte length. Each memory word has an
address attached to it, referred to as its physical address, which is encoded by the group of
the MCU address bus bits. Memory blocks one byte length are called banks.

For data buses wider than a byte, two or more banks are needed to connect all the data bus
lines, as illustrated in Figure for a 16-bit data bus. In this figure, physical address refers to
the address seen by the CPU with the address bus, while the internal addresses are the
addresses proper to the bank.

4

3.5 MSP430 Memory Organization
Example: The debugger of a certain microcontroller presents memory information in
chunks of words in the list form shown below, where the first column is the address of the
word in the second column. Following the debuggers’ conventions, all numbers are in hex
system. If more than one word is on the line, the address is for the first word only.
Assuming that all data is effectively 16-bit wide, break the information into bytes with the
respective address, (a) assuming little endian convention, and (b) assuming big endian
convention.

F81E: E0F2 0041 0021

F824: 403F 5000

F828: 831F

5

3.6.1 Anatomy of an I/O Interface
Control Registers: Allow for configuring the operation of the device and the interface itself. One or
several control registers can be provided depending on the complexity of the interface. Sometimes this
type of register is called Mode or Configuration Register. (Special Purpose Registers)

Status Register: Allow for inquiring about the device and interface status. Flags inside these registers
indicate specific conditions such as device ready, error, or other condition. (Special Purpose Registers)

Data Registers: Allow for exchanging data with the device itself. Unidirectional devices might have only
one data register (Data-in for input devices or Data-out for output devices). Bi-directional I/O interfaces
include both types. (General Purpose Registers)

Fig. Anatomy of an I/O interface

6

3.6.1 Anatomy of an I/O Interface
Direction Register (PxDIR): Selects IN or OUT direction function for the pin, with 1 for output direction and
0 for input direction.

Input Register (PxIN): This is a read-only register. The value changes automatically when the input itself
changes.

Output Register (PxOUT): to write signal to output. This is a read-and-write register.

Function Select Register (PxSEL): Used to select between I/O port or peripheral module function. With
PxSEL.n = 0, pin Px.n operates as an I/O pin port; with PxSEL.n = 1, as a module pin (other function).

Fig. Basic IO Pin hardware configuration:
a) Basic I/O register’s functions
b) Pull-down resistor for inputs
c) Pull-up resistors

7

3.6.1 Anatomy of an I/O Interface
Let’s say for example, pins 7 to 3 of port 6 are to be used as output pins, and pin 2
for operating the module, then we should use appropriate CPU instructions to write
0xF8 in the P6DIR register and 04h in the P6SEL register.

• P6DIR=11111000=0xF8, P6SEL=00000100= 04h

Therefore, in 6th port, B7,…B3 are output pins while B2, B1 and B0 are input pins.
Moreover, all pins of 6th port except B2 are GPIO (General Purpose Input/Output)
pins

Since the input port goes through a three-state buffer, it is not advisable to leave it
floating when the pin operates in input mode. It is necessary to connect a pull-up or
a pull-down resistor.

Additional configuration registers might be included as part of an I/O port. Examples
include registers to configure interrupt capabilities in the port, or to use internal pull-
up/pull-down resistors, and other functions.

8

3.7.1 Register Transfer Notation (RTN)
It is important for the programmer to have a notation available for operations in
MCU environments, independent of the specific MCU architecture but taking into
consideration the features of the systems. One such notation is the Register
Transfer Notation (RTN).

After executing an instruction, the contents of a register or cells in memory may be
written upon with a new datum. In this case, the register or cell being modified is
called destination. The source causing the change at destination may be a
datum(one piece of data) being transferred (copied) or the result of an operation.
This process is denoted in abstract form as

destination source OR sourcedestination

9

3.7.1 Register Transfer Notation
The notation in programmer’s model for the different operands that may be used in
RTN are as follows:

1. Constants: These are expressed by their value or by a predefined constant name,
for example 24, 0xF230, MyConstant. Constants cannot be used in destination.

2. Registers: These are referred to by their name. If it is in abstract form without
reference to a particular CPU, it is customary to use Rn, where n is a number or
letters. (Remember for MSP430, they are only numbers. R0,……….R15.)

3. Memory and I/O: These are referred to by the address in parenthesis, as
in(0x345E), which means “The data in memory at address 0x345E.” Notice that it is
data address, not physical address. If the address information is contained in
register Rn we write (Rn), meaning by that “The data in memory at address given by
Rn”. We also say that the register points to the data.

10

3.7.1 Register Transfer Notation
Example: The following transactions illustrate RTN for memory operands. For these
examples, let us assume word-size data at addresses before each transaction as
[0246h] = 32AFh and [028Ch] = 1B82h. Moreover, let us assume little endian
storage.

11

3.7.1 Register Transfer Notation
Example: Assume two 16-bit registers, R6 and R7, with contents R6 = 4AB2h and R7 = 354Fh,
respectively. Moreover, assume words at addresses [4AB2h] = 02ACh, [4C26h] = 94DFh and
[4AB8h] = 3F2Ch. Assume little endian convention when necessary. The following examples
illustrate more RTN expressions:

12

The MOV Instruction
• MOV is the primary instruction to copy (not cut) information within the computer system.

• src (Source), the location of where the information is to be copied from

• dst (Destination), the location of where the information is to be copied to

• The src and dst can have operands as dictated in Addressing Modes

• It performs both 16-bit and 8-bit operations, dictated by the extensions .w and .b. If no
extension is used, the instruction is assumed to be a 16-bit operation.

mov.w src, dst; .w is optional

mov.b src, dst

.w tells the assembler this is
a 16-bit operation

.w treats the src and
dst as 16-bit words.

.w tells the assembler this is
a 8-bit operation

.w treats the src and
dst as 8-bit words.

13

3.7.5 Addressing Modes
Addressing modes can be defined as the way in which an operand is specified
within an instruction so as to indicate where to find the data with which the
operation is executed.

In general, the data to be used or stored in a transfer or in an arithmetic or logic
instruction can be located in only one of the following possible places:

1. It may be explicitly given,

2. It may be stored in a CPU register,

3. It may be stored at a memory location, or

4. It may be stored in an I/O port or peripheral register.

14

3.7.5 Addressing Modes
Seven addressing modes for the source operand and four addressing modes for the
destination operand for MSP430. Regardless of the type of the addressing modes,
registers can be in the place of source or destination!
Source Destination Addressing Mode Syntax Description

YES YES Register Rn The operands are register names (i.e, PC, R4)

YES YES Indexed X(Rn) (Rn + X) points to the operand.

YES YES Symbolic ADDR The word (ADDR) is a label of the address of where
information is to be accessed

YES YES Absolute &ADDR The word following the instruction contains the absolute
address

YES NO Indirect Register @Rn Rn is used as a pointer to the operand.

YES NO Indirect
Auto Increment

@Rn+ Rn holds the address of where information is to be
accessed. After access, the register is incremented.

YES NO Immediate #N The operand N is a constant value to put into destination

Table. Addressing modes for MSP430

15

Register Mode
In register mode addressing, the operand for either the source and/or destination are CPU
registers.

mov.w R4, R5 ;copy R4 into R5

mov.w R5, R6 ;copy R5 into R6

mov.b R7, R8 ;copy Low Byte of R7 into R8

mov.b R8, R9 ;copy Low Byte of R8 into R9

mov.w R10, R11 ;copy R10 into R11

mov.w R11, R12 ;copy R11 into R12

Rn (Register)

Low ByteHigh Byte

16

Indexed Mode
Indexed mode is similar to indirect register mode in that a register name is provided that
holds the address of where to access the information. Index mode extends this functionality
by allowing a numeric constant to be added to the contents of the register. This constant is
called an offset, which is numeric and 16-bit signed number.

mov.w 0(R4), 8(R5) ;copy content of the memory location addressed by
R4 into the memory location addressed by R5+8

mov.w 2(R4), 10(R6) ;copy content of the memory location addressed by
R4+2 into the memory location addressed by R6+10

mov.w 3(R7), 8(R8);copy content of the memory location
addressed by R7+3 into the memory location addressed by R8+8

mov.w 6(R8), 14(R9) ;copy content of the memory location
addressed by R8+6 into the memory location addressed by R9+14

17

Symbolic Mode
In symbolic mode, the address label is simply inserted in either the src or dst fields without
any preceding indicator. Address label is used as the operand and represents the memory
location. Symbolic mode supports labels for 16-bit addresses so that just like absolute
mode. Label is a sequence of characters that represents a 16-bit address in memory

mov.w Const1, R4 ;copy content at address label Const1 into R4

mov.w R4, Var1 ;copy content of R4 into address label Var1

mov.w Const2, R5 ;copy content at address label Const2 into R5

mov.w R5, Var2 ;copy content of R5 into address label Var2

Const1, Const2, Var1 and Var2 are labels and they must be defined in the
program.

18

Absolute Mode
In absolute mode addressing the src and/or dst is a 16-bit address value. This mode is the
first to allow us to access the memory system of the MSP430. This mode only supports 16-
bit addressing. The operand is a 16-bit address. This 16-bit address is the actual address
that will be accessed. The term absolute means that the address provided is the actual
address to access and not a variable name or label.

This allows us to move information from an address location into another address
location but we can also mix and match. We can also move something from an address
location into a register and vice versa. To denote absolute addressing, the value must be
preceded by & (ampersand).

mov.w &2000h, R4 ;copy contents of 2000H address into R4

mov.w R4, &2004h ;copy R4 into 2004h address

mov.w &2002h, R5 ;copy contents of 2002H address into R5

mov.w R5, &2006h ;copy R5 into 2006h address

mov.w &2006h, &2002h ;copy contents of 2006H address into 2002H address

19

Indirect Register Mode
In indirect register mode, a CPU register is used to provide the address of where the
information to be accessed is stored. @ (at) symbol is placed in front of the register name
to indicate the use of indirect register name.

mov.w #2000h, R4 ;load 2000h into R4

mov.w @R4, R5 ;copy the content of memory location addressed
by the content of R4 into R5

mov.w @R5, R6 ;copy the content of memory location addressed
by the content of R5 into R6. Also remember the content of R5
comes from previous line

20

Indirect Auto Increment Mode
In indirect auto increment mode, the pointing register is automatically incremented after
the completion of the instruction. The pointing register can be incremented by 1 or 2
depending on the type of the size of the operation dictated by .w and .b.

mov.w @R4+, R5 ;copy data that is addressed by R4 into R5 and R4=R4+2

mov.w @R4+, R6 ;copy data that is addressed by R4 into R6 and R4=R4+2

mov.w @R4+, R7 ;copy data that is addressed by R4 into R7 and R4=R4+2

mov.b @R4+, R8 ;copy data that is addressed by R4 into R8 and R4=R4+1

mov.b @R4+, R9 ;copy data that is addressed by R4 into R9 and R4=R4+1

mov.b @R4+, R10 ;copy data that is addressed by R4 into R10 and R4=R4+1

21

Immediate Mode
In this mode, the value of the operand Number is the datum. Immediate mode is reserved
only for source operands, since a number cannot be changed by an operation. # (pound)
symbol is placed in front of the constant number

mov.w #1234h, R4 ;load 1234h into R4

mov.w #0FACEh, R5 ;load FACEh into R5

mov.b #99h, R6 ;load 99h into R6

mov.b #0EEh, R7 ;load EEh into R7

mov.w #371, R8 ;load 371 decimal into R8

mov.b #10101010b, R9 ;load 10101010 binary into R9

mov.b #’B’, R10 ;load ASCII code for B(42h) binary into R10

Not: If the number starts with a letter, a 0(zero) must be inserted before the number to
avoid confusion. Otherwise, Assembler may treat the letter(s) as variable name or
characters depending on the program.

22

Examples
Before After

mov R8, R6 Register Mode

23

Examples
Before After

mov @R8, R6 Indirect Register Mode

24

Examples
Before After

mov R10, 56h(R6) Indexed Mode

25

Examples
Before After

mov #0x025A, R10 Immediate Mode

26

Examples
Before

After
add R8, R6

R6←R6 + R8 in RTN, means “add the contents of registers
R8 and R6, and store the result in Register R6”.
Since 0200h + 0252h = 0452h, Then R6 = 0452h after this instruction.
Register Mode

27

Examples
Before

After

sub @R8, R6

R6←R6 − (R8) in RTN, means “subtract from the contents of R6 the
data in memory located at the address provided by register R8, and
store result in Register R6”. Since R8=0252h, we search for address
0252h in the memory space where we see [0252h] = 2ABEh.
Now 0200h − 2ABEh = D742h.
Therefore, R6 = D742h after this instruction.
Indirect Register Mode

28

Examples
Before

After

xor R10, 56h(R6)

(R6 + 56h) ← R10.xor.(R6 + 56h) in RTN, means “perform a
bitwise XOR operation with the contents of register R10 and the
content of the memory location whose address is found by
adding 56h to the contents of register R6, and store the result
in the same memory location”.
Since R10 = 32FCh and (R6+56h)=(0256h)=1234h
32FCh XOR 1234h = 20C8h  (0256h)
Indexed Mode

