Bit Clear, Bitwise Logic Instructions(Continuing)

bic(.B or W) src,dst; dst&(NOTsrc)ANDdst, clear bits in dst with mask
src. Flag is not effected.

Ex. For the initial conditions, R12=25A3H, R15= 8B94H and [25A5H]= 6CH, what will
be the content of R15 after the execution of the following program?

bic.b 2(R12),R15; R15¢(R12+2)”AND R15

Operation: New Contents: R15 = 0090

1001 0011 (Memory) AND Flags: not affected
1001 0100 (LowByteR15) =

1001 0000 (new Low Byte R15)

Bit Set

bis(.B or _W) src,dst; dst&srcORdst, set bits in dst with mask src. Flag is
not effected.

Ex. For the initial conditions, R12=25A3H, R15= 8B94H and [25A5H]= 6CH, what will
be the content of R12 after the execution of the following program?

bis R15,R12; R12€¢R12 OR R15

Operation: New Contents: R12 = AFB7
1000 1011 1001 0100 (R15) OR
00100101 10100011 (R12) = Flags: not affected.

1010 1111 1011 0111

Roll Right Arithmetically

rra(.B or _W) dst; Shiftall bitstothe right, C<LSB

b S’ 4 C
Before | b15 b14 ... b2 b1 b0 X b15 . .b8 b7 b6. .b2 b1 b0 X

0...0 b7 b7 b6..Db2bl|—>|b0

After b15 b15 b14 ... b2 b1 |—» |10
rra.w; C=LSB rra.b; C=LSB

Ex. If the initial content of R5 is 8EF5H. What will be the content of R5 and the Carry
value after the following codes individually?

rra.wR5; rra.b R5;

Rotate Right through Carry

rrc(.B or _W) dst; Shiftall bits to the right, C&LSB

\~7

c
C
Before | b15 b14 ... b2 b1 b0 Co b15..b8 b7 b6..b2 b1 b0 Co
After COb15b14...b2 b-‘_,bo 0.-.000b7b6..b2b1 —» | b0
b < < - ¥ pf — —V
rrc.w; C=LSB rrc.b; C=LSB

Ex. If the initial content of R5 is 8EF5H and C=0. What will the content of R5 and the
new Carry value be after the following codes individually?

rrc.wR5; rrc.bR5;

Roll Left Arithmetically

rla(.B or _W) dst; Shiftall bits to the left

* C
Before | X b15 b14 ... b2 b1 b0 X b15 . . b8 b7 b6. .b2 b1 b0
b7 0...0 b6 bS5..b1b0 O
After b15|<— | b14 b13 ... b1 b0 O N |
rla.w; C=b15 rla.b: C=b7

Ex. If the initial content of R5 is 8EF5H. What will the content of R5 and the new values of
C, Z, N and V bits be after the following codes individually?

ria.w R5; ria.bR5;

Rotate Left through Carry

ric(.B or _W) dst; Shiftall bits to the left

(0 B

Before | Co b15 b14 ... b2 b1 b0 Co b15. .b8 b7 b6. .b2 bl b0
|

after [b15]<— [b4 b13 ... b1 b0 Co b7 0...0 b6 b5..b1 b0 Co

¥ > - >4 | - >4

ric.w; C=b15 ric.b; C=b7

Ex. If the initial content of R5 is 8EF5H and C=0. What will the content of R5 and the
new values of C be after the following codes individually?

ric.wR5; ric.bR5;

Program Flow Instructions, Unconditional Jump

Unconditional jumps are realized with the jump instruction yjmp label.

* When the program flow sees the ymp label instruction. Program flow will continue from the
point the label indicates.

* Text for the label may be anything in English characters such as abc, xyz, etc.
/START
)
Jump to

Jump I: Start

Main program :l e
Sequence

Figure. Unconditional '!umE

Conditional Jump

Conditional jumps are realized with different types of the jump instructions
such as

jz label, jnz label, jc label, jnc label, jl label,
jge label and jn label.

* When the program flow sees the “jump” instruction and also the specific
condition is satisfied, program flow will continue from the point the label
indicates otherwise program will continue.

* Text for the label may be anything in English characters such as abc, xyz, etc.

Unconditional Jump
JMP dst; Program flow jumps to destination label without any condition.
Ex. mov.w #0x1234, r5; foad RS with 1234H
mov.w #0x5678, r6. load R6 with 56/78H
program flow JMP XYZ. jump to label xyz
ﬁﬁ;ﬁiT“ mov.w #OXEEEE, r7; skip this line
mov.w #0x2222, r8; skip this line
Xyz mov.w #0x9999, r9 . load R9Y9 with 9999H

mov.w #OXABCD, r10 : foad RI10 wrth ABCDH

Unconditional Jump

Jumping procedure may also be nested...

Ex. mov.w #0x1234, r5; load R5 with 1234H

mov.w #0x5678, r6; load R6 with 5678H

Jmp xyz; jump to label xyz
mov.w #OXEEEE, r7; skip this line
mov.w #0x2222, r8; skip this line

Xyz mov.w #0x9999, r9 ; load R9 with 9999H
mov.w #0xABCD, r10 ; load R10 with ABCDH
Jmp abc; jump to label abc
mov.w #0XABCD, r3 ; skip this line

abc mov.w #0x3333, rl14:; load R14 with 3333H

Unconditional Jump

Jumping direction can also be backward...
Ex. mov.w #0x1234,
mov.w #0x5678,

Jmp

mov .
mov .
XyZ mov.
mov .
mov .
abc mov.

Jmp

r5 ;load R5 with 1234H

ré ;load R6 with 5678H

abc ;jump to label abc

W
W

W
W
W
W

#0OXEEEE,
#0x2222,
#0x9999,
#0xABCD,
#0xABCD,
#0x3333,

r7 ;skip this line

r8 ;skip this line

ro ;load R9 with 9999H, skipped at first jump
rl0 ;load R10 with ABCDH, skipped at first jump
r3 ;load R3 with ABCDH, skipped at first jump
ri4 ;load R14 with 3333H

Xyz ;jump to label xyz

Conditional Jump

JZ dst, JEQ dst; Jumps to destination label if Z=1.

Ex. mov.w #0x1234, r5 ;load R5 with 1234H
mov.w #0x1234, r6 ;load R6 with 1234H
sub.w r6,r5 ;subtract R6 from R5, save to R5
Jz zero ;Z=1, jump to label zero
mov.w #OXEEEE, r7 ;skip this line
mov.w #0x2222, r8 ;skip this line

zero mov.w #0x1111, r9 ;load R9 with 1111H
add.w #0x2222, r9 ;add 2222H to R9 and save in R9

Conditional Jump

JNZ dst, JINE dst; Jumps to destination label if Z=0.

Ex. mov.w #0x1234, r5 ;load R5 with 1234H
mov.w #0x4567, r6 ;load R6 with 4567H
sub.w r5, r6 ;subtract R5 from R6, save to R6
Jnz nzero ;Z=0, jump to label nzero
mov.w #OXEEEE, r7 ;skip this line
mov.w #0x2222, r8 ;skip this line

nzero mov.w #0x1111, r9 ;load R9 with 1111H
Xor.w #0x2222, r9 ;XOR 2222H with R9 and save in R9

Conditional Jump

JN dst; Jumps to destination label if N=1.

Ex. mov.w #0x1234, r5 ;load R5 with 1234H
mov.w #0x4567, r6 ;load R6 with 4567H
sub.w r6,r5 ;subtract R6 from R5, save to R5
Jjn negative ;N=1, jump to label negative
mov.w #OXEEEE, r7 ;skip this line
mov.w #0x2222, r8 ;skip this line

negative mov.w #0x1111l, r9 ;load R9 with 1111H
and.w #0x2222, r9 :AND 2222H with R9 and save in R9

Conditional Jump

JC dst; Jumps to destination label if C=1.

Ex. mov.w #0xA234, r5 ;load R5 with A234H
mov.w #0xB567, r6 ;load R6 with B567H
add.w r6,r5 ;add R6 to R5, save to R5
jc carry ;C=1, jump to label carry
mov.w #OXEEEE, r7 ;skip this line
mov.w #0x2222, r8 ;skip this line

carry mov.w #0x1111, r9 ;load R9 with 1111H
and.w #0x2222, r9 ;AND 2222H with R9 and save in R9

Conditional Jump

JNC dst; Jumps to destination label if C=0.
Ex. mov.w #0x1234, r5 ;load R5 with 1234H
mov.w #0x2567, r6 ;load R6 with 2567H
add.w r6,r5 ;add R6 to R5, save to R5
jnc ncarry ;;C=0, jump to label ncarry
mov.w #OXEEEE, r7 ;skip this line
mov.w #0x2222, r8 ;skip this line
ncarry mov.w #0x1111, r9 ;load R9 with 1111H
and.w #0x2222, r9 ;AND 2222H with R9 and save in R9

Conditional Jump

What if the jump condition is not satisfied...
Ex: mov.w #0x1234, r5 ;load R5 with 1234H

mov.w #0x4567, r6 ;load R6 with 4567H
sub.w r5,r6 ;subtract R5 from R6, save to R6
Jn negative ;N=0, DO NOT jump to label negative, just continue!
mov.w #OXEEEE, r7 ;load R7 with EEEEH
mov.w #0x2222, r8 ;load R8 with 2222H
negative mov.w #0x1111l, r9 ;load R9 with 1111H
or.b #0x33, r9 ;OR 33H with R9 and save in R9

Conditional Jump
JL dst; Jumps to destination label if N and V bits are different.
Ex. mov.w #0xXABCD, r5 ;load R5 with ABCDH
mov.w #0x9876, r6 ;load R6 with 9876H
add.w r6,r5 ;R5=4443H, V=1, N=0
J1 bjk ;jump to label bjk
mov.w #OXEEEE, r7 ;skip this line
mov.w #0x2222, r8 ;skip this line
bk mov.w #OXAAAA, r9 ;load R9 with AAAAH
and.b #0x44, r9 ;;AND 44H with R9 and save in R9

Conditional Jump

JGE dst; Jumps to destination label if N and V bits are same.

Ex. mov.w #0x2345, r5 ;load R5 with ABCDH
mov.w #0x6789, r6 ;load R6 with 6789H
add.w r6,r5 ;V=1, N=1
Jjge bjk ;jump to label bjk
mov.w #OXEEEE, r7 ;skip this line
mov.w #0x2222, r8 ;skip this line

bjk mov.w #0xXAAAA, r9 ;load R9 with AAAAH
and.b #0x44, r9 :AND 44H with the content of R9, save to R9

GPIO
General Purpose Input Output

Pinout

o
£
h
X O
- pu
29528 © E3:z
AAN=-S=¥x0S0pa™ =
OOMMOSI03I000kEE 5 EDL
QOOOZEEFEES XX aowS §o
AN OEAdAdSSpN NP2 ESD
ww;owEﬁ-n—nﬁu:intn>-Dm333m
aooao acococoar-OQOOQOACS >0 >
OO0O00O000O0O00O0000000000100
OO O ODTON~OODODMNOWLT MON~—
WM MMMMMSMNMMNMNMN OO ©© OO O © O
pe.aicaam 1 O 60 [1 P7.7TBOCLKMCLK
P6.5/CBS5/AS [2 59 [1 P7.6/TB0.4
P6.6/CB6/A6 [] 3 58 [0 P7.5TB0.3
P6.7/CB7/A7 (] 4 57 [1 P7.4/TB02
p7.0/CB8/A12 O 5 56 [J P5.7/TBO.1
P7.1/CBY/A13 [6 55 1 P5.6/TB0.0
P7.2/CB10/A14 [7 54 [1 P4.7/PM_NONE
P7.3/CB11/A15 [8 53 [P4.6/PM_NONE
P5.0/AB/VREF+/VeREF+ [9 MSPA30ES52D 52 [] P4.5/PM_UCA1RXD/PM_UCA1SOMI
P5.1/A9/VREF-/VeREF- [] 10 MSP430F5527 51 [1 P4.4/PM_UCA1TXD/PM_UCA1SIMO
AVCCT [11 MSP430F5525 50 [1 pvee2
Ps.4/XIN [12 MSP430F5521 49 [] pvss2
P5.5/XOUT [13 48 [J P4.3/PM_UCB1CLK/PM_UCA1STE
AVSS1 [14 47 [P4.2/PM_UCB1SOMIPM_UCB1SCL
P80 15 46 [0 P4.1/PM_UCB1SIMO/PM_UCB1SDA
P81 [16 45 [0 P4.0/PM_UCB1STE/PM_UCA1CLK
P82 (17 44 [1 P3.7/TBOOUTH/SVMOUT
pvcel [18 43 [0 P36/TB06
bvss1 [19 42 [1 P3.5/TB0.S
VCORE [20 41 [P3.4/UCAORXD/UCAOSOMI
TANMODT N ONNODNDO T NMOT O ONNODDO
N AN NNANNNNNODOOODOOOOOOS
iy uuouoog
43393353358 55853g¢L¢e
SECEEEQECEZEEE29882
edasagrRoTba<ug 509038
e R i i I e o B B P 3
8u&mnménmgégmgéagggg
< = = fa)
g z 2 °5233%
3 E E xnn 5
b] 3 s 38m0<
& = o NDQOOD0
aE3282
NS m?
[I)
a o o

* As can be seen from the figure, some pins of the
microcontroller has multiple functions, these functions can be
set through the software!

* Our MCU has totally 8 ports (P1,...P7, each port is 8-bit but
P8 is 3-bit) that can be configured for different purposes.

Figure. Pinout of MSP430F5529

MSP430

Develop your own USB
applications and emulate,
using a single USB cable!

Integrated USB hub and
US8-based power supply

RESET button, for
the target device

Button that invokes the
USB bootstrap loader,
for firmware updates

P2, buttorPdp gEnls.' !

for ‘P‘i .i@:-rf.ncc

Figure. MSP430F5529 LaunchPad

LaunchPad Evaluation Kit

eZ-FET emulator

e Open-source

» Works with almost any
MSPA30 target

Isolation Jumper Block

e Connect to other targets

* Allow more accurate power
measurement

A40-pin BoosterPack header

e Compatible with 20-pin and
40 pin BoosterPacks

* Now allows BoosterPacks
with more functionality

MSPA30F5529 USB Microcontroller
* 128KB flash, 8KB RAM

® Fullspeed USB

« ADC

® 5timers

* 4 serial interfaces (SPI, UART, I'C)
* Analog comparator

* Much more !

Input and Output

Output

' Input refers the data transfer TO the microcontroller(MCU)

Output refers the data transfer FROM the microcontroller(MCU)

Input

* There are special function registers that allow the Ports to
be configured as input and/or output

* Moreover, while some pins of a port can be configured as
inputs others can be configured as outputs.

Port Registers

Direction Registers, PxDIR
It allows the user to configure the target port as an Input and/or Output. It is 8-bit register.

‘x" is the port number (from 1 to 8)

Bit = 1: The port pin is set up as an output;

Bit = 0: The port pin is set up as an input.

Ex. Write the program that configures the Port 1’s all bits as output

mov.b #OxFf, r5 ;load R5"s LSB with FFH

mov.b r5, P1DIR ;PIDIR=FFH
** Therefore, all pins of Port 1 are outputs
(P1.0, P1.1, P1.2,P1.3,P1.4,P1.5, P1.6, P1.7)

While the number before ‘’ shows port number, the one after ” shows bit(pin) number.

Port Registers
Output Registers, PxOUT
It allows the user to send the desired data to the output port. Its width is 8-bit.

‘x” is the port number (from 1 to 8)

Ex. Write the program that turns on the LED on P4.7

mov.b #0x80, r5 ;load R5"s LSB with 80H (10000000)

mov.b r5, PADIR ;P4DIR=80H, Only P4.7 is output, others are inputs
mov.b #0x80, P40UT ;Turn ON P4.7, 10000000.

Port Registers

Output Registers, PxOUT
Ex. Write the program that toggles (ON and OFF) the P1.0 continuously.

mov.b #0x01l, r5 ;load R5"s LSB with OI1H

mov.b r5, P1DIR ;PiDIR=01H, Only P1.0 is output, others are inputs
OFF mov.b #0x00, P10OUT ;Turn OFF P1.0

mov.b #0x01, P1OUT ;Turn ON P1.0

Jmp OFF ;jump to label OFF

Port Registers

Input Registers, PxIN
It allows the user to receive the desired data from the input port. Its width is 8-bit.
‘x” is the port number (from 1 to 8)

It is read-only register, which means data inside the registers can be read but not
written.

PxIN configuration:
Bit = 1: The input is high;
Bit = 0: The input is low;

Port Registers

Ex. Run the following program and discuss about the sense.
mov.b #0xFF, P1DIR ;Entire Portl i1s output
mov.b #0OxFF, P4DIR ;Entire Port4d is output
mov.b #0x00, P40UT ;Clear Port4, recommended to clear at start
mov.b #0x00, P1OUT ;Clear Portl
mov.b #0x00, P2DIR ;Entire Port2 i1s iInput
mov.b P2IN, r9

MSP430F5529 LaunchPad has logic 1 at its input
cmp #OxFD, r9 8 P

pins (P2.1, P1.0, P4.7 and P1.1) as default.

Jz zero Therefore, if no button pressed at P2, the data
mov.b #OXFF, P40OUT that is read in P2IN is IfFH. .
i If the button at P2.1 is pressed (logic 0), the data
Jmp Done that is read in P2IN is FDH

zero mov.b #OxFF, P10UT Program flow is controlled by the state of the

button at P2.1 on the board
Done

Port Registers
Port Function Select Registers (PxSEL1 and PxSELO)

We use the Port Function Select (PxSEL) registers to tell the MCU which function to
use, including whether to make the signal pin a digital input/output. The
MSP430F5529 has more than two functions assigned to most of its pins, so it
requires two bits to control the function selection.

Digital 1/O (Default)
Primary Function

Reserved

- = O O
O +» O

Secondary Function

Since PxSEL registers have 0 default value, we don’t have to configure them for
GPIO applications.

