
1

Bit Clear, Bitwise Logic Instructions(Continuing)
bic(.B or .W) src,dst; dst←(NOTsrc)ANDdst, clear bits in dst with mask
src. Flag is not effected.

Ex. For the initial conditions, R12=25A3H, R15= 8B94H and [25A5H]= 6CH, what will
be the content of R15 after the execution of the following program?

bic.b 2(R12),R15; R15(R12+2)’AND R15

2

Bit Set
bis(.B or .W) src,dst; dst←srcORdst, set bits in dst with mask src. Flag is
not effected.

Ex. For the initial conditions, R12=25A3H, R15= 8B94H and [25A5H]= 6CH, what will
be the content of R12 after the execution of the following program?

bis R15,R12; R12R12 OR R15

3

Roll Right Arithmetically
rra(.B or .W) dst; Shift all bits to the right, CLSB

Ex. If the initial content of R5 is 8EF5H. What will be the content of R5 and the Carry
value after the following codes individually?

rra.w R5; R5= C77AH, C=1 rra.b R5; R5= 00FAH, C=1

rra.w; C=LSB rra.b; C=LSB

4

Rotate Right through Carry
rrc(.B or .W) dst; Shift all bits to the right, CLSB

Ex. If the initial content of R5 is 8EF5H and C=0. What will the content of R5 and the
new Carry value be after the following codes individually?

rrc.w R5; R5= 477AH, C=1 rrc.b R5; R5= 007AH, C=1

rrc.w; C=LSB rrc.b; C=LSB

5

Roll Left Arithmetically
rla(.B or .W) dst; Shift all bits to the left

Ex. If the initial content of R5 is 8EF5H. What will the content of R5 and the new values of
C, Z, N and V bits be after the following codes individually?

rla.w R5; R5= 1DEAH, C=1,Z=0,N=0,V=1 rla.b R5; R5= 00EAH, C=1,Z=0, N=1,V=0

rla.w; C=b15 rla.b; C=b7

6

Rotate Left through Carry
rlc(.B or .W) dst; Shift all bits to the left

Ex. If the initial content of R5 is 8EF5H and C=0. What will the content of R5 and the
new values of C be after the following codes individually?

rlc.w R5; R5= 1DEAH, C=1 rlc.b R5; R5= 00EAH, C=1

rlc.w; C=b15 rlc.b; C=b7

7

Program Flow Instructions, Unconditional Jump
Unconditional jumps are realized with the jump instruction jmp label.

• When the program flow sees the jmp label instruction. Program flow will continue from the
point the label indicates.

• Text for the label may be anything in English characters such as abc, xyz, etc.

Figure. Unconditional jump

8

Conditional Jump
Conditional jumps are realized with different types of the jump instructions
such as

jz label, jnz label, jc label, jnc label, jl label,

jge label and jn label.

• When the program flow sees the “jump” instruction and also the specific
condition is satisfied, program flow will continue from the point the label
indicates otherwise program will continue.

• Text for the label may be anything in English characters such as abc, xyz, etc.

9

Unconditional Jump
JMP dst; Program flow jumps to destination label without any condition.

Ex. mov.w #0x1234, r5; load R5 with 1234H

mov.w #0x5678, r6; load R6 with 5678H

jmp xyz; jump to label xyz

mov.w #0xEEEE, r7; skip this line

mov.w #0x2222, r8; skip this line

xyz mov.w #0x9999, r9 ; load R9 with 9999H

mov.w #0xABCD, r10 ; load R10 with ABCDH

Program flow
skips next 2 lines
after jmp xyz

10

Unconditional Jump
Jumping procedure may also be nested…
Ex. mov.w #0x1234, r5; load R5 with 1234H

mov.w #0x5678, r6; load R6 with 5678H

jmp xyz; jump to label xyz

mov.w #0xEEEE, r7; skip this line

mov.w #0x2222, r8; skip this line

xyz mov.w #0x9999, r9 ; load R9 with 9999H

mov.w #0xABCD, r10 ; load R10 with ABCDH

jmp abc; jump to label abc

mov.w #0xABCD, r3 ; skip this line

abc mov.w #0x3333, r14; load R14 with 3333H

11

Unconditional Jump
Jumping direction can also be backward…

Ex. mov.w #0x1234, r5 ;load R5 with 1234H

mov.w #0x5678, r6 ;load R6 with 5678H

jmp abc ;jump to label abc

mov.w #0xEEEE, r7 ;skip this line

mov.w #0x2222, r8 ;skip this line

xyz mov.w #0x9999, r9 ;load R9 with 9999H, skipped at first jump

mov.w #0xABCD, r10 ;load R10 with ABCDH, skipped at first jump

mov.w #0xABCD, r3 ;load R3 with ABCDH, skipped at first jump

abc mov.w #0x3333, r14 ;load R14 with 3333H

jmp xyz ;jump to label xyz

12

Conditional Jump
JZ dst, JEQ dst; Jumps to destination label if Z=1.

Ex. mov.w #0x1234, r5 ;load R5 with 1234H

mov.w #0x1234, r6 ;load R6 with 1234H

sub.w r6,r5 ;subtract R6 from R5, save to R5

jz zero ;Z=1, jump to label zero

mov.w #0xEEEE, r7 ;skip this line

mov.w #0x2222, r8 ;skip this line

zero mov.w #0x1111, r9 ;load R9 with 1111H

add.w #0x2222, r9 ;add 2222H to R9 and save in R9

13

Conditional Jump
JNZ dst, JNE dst; Jumps to destination label if Z=0.

Ex. mov.w #0x1234, r5 ;load R5 with 1234H

mov.w #0x4567, r6 ;load R6 with 4567H

sub.w r5, r6 ;subtract R5 from R6, save to R6

jnz nzero ;Z=0, jump to label nzero

mov.w #0xEEEE, r7 ;skip this line

mov.w #0x2222, r8 ;skip this line

nzero mov.w #0x1111, r9 ;load R9 with 1111H

xor.w #0x2222, r9 ;XOR 2222H with R9 and save in R9

14

Conditional Jump
JN dst; Jumps to destination label if N=1.

Ex. mov.w #0x1234, r5 ;load R5 with 1234H

mov.w #0x4567, r6 ;load R6 with 4567H

sub.w r6,r5 ;subtract R6 from R5, save to R5

jn negative ;N=1, jump to label negative

mov.w #0xEEEE, r7 ;skip this line

mov.w #0x2222, r8 ;skip this line

negative mov.w #0x1111, r9 ;load R9 with 1111H

and.w #0x2222, r9 ;AND 2222H with R9 and save in R9

15

Conditional Jump
JC dst; Jumps to destination label if C=1.

Ex. mov.w #0xA234, r5 ;load R5 with A234H

mov.w #0xB567, r6 ;load R6 with B567H

add.w r6,r5 ;add R6 to R5, save to R5

jc carry ;C=1, jump to label carry

mov.w #0xEEEE, r7 ;skip this line

mov.w #0x2222, r8 ;skip this line

carry mov.w #0x1111, r9 ;load R9 with 1111H

and.w #0x2222, r9 ;AND 2222H with R9 and save in R9

16

Conditional Jump
JNC dst; Jumps to destination label if C=0.

Ex. mov.w #0x1234, r5 ;load R5 with 1234H

mov.w #0x2567, r6 ;load R6 with 2567H

add.w r6,r5 ;add R6 to R5, save to R5

jnc ncarry ;C=0, jump to label ncarry

mov.w #0xEEEE, r7 ;skip this line

mov.w #0x2222, r8 ;skip this line

ncarry mov.w #0x1111, r9 ;load R9 with 1111H

and.w #0x2222, r9 ;AND 2222H with R9 and save in R9

17

Conditional Jump
What if the jump condition is not satisfied…
Ex: mov.w #0x1234, r5 ;load R5 with 1234H

mov.w #0x4567, r6 ;load R6 with 4567H

sub.w r5,r6 ;subtract R5 from R6, save to R6

jn negative ;N=0, DO NOT jump to label negative, just continue!

mov.w #0xEEEE, r7 ;load R7 with EEEEH

mov.w #0x2222, r8 ;load R8 with 2222H

negative mov.w #0x1111, r9 ;load R9 with 1111H

or.b #0x33, r9 ;OR 33H with R9 and save in R9

18

Conditional Jump
JL dst; Jumps to destination label if N and V bits are different.

Ex. mov.w #0xABCD, r5 ;load R5 with ABCDH

mov.w #0x9876, r6 ;load R6 with 9876H

add.w r6,r5 ;R5=4443H, V=1, N=0

jl bjk ;jump to label bjk

mov.w #0xEEEE, r7 ;skip this line

mov.w #0x2222, r8 ;skip this line

bjk mov.w #0xAAAA, r9 ;load R9 with AAAAH

and.b #0x44, r9 ;AND 44H with R9 and save in R9

19

Conditional Jump
JGE dst; Jumps to destination label if N and V bits are same.

Ex. mov.w #0x2345, r5 ;load R5 with ABCDH

mov.w #0x6789, r6 ;load R6 with 6789H

add.w r6,r5 ;V=1, N=1

jge bjk ;jump to label bjk

mov.w #0xEEEE, r7 ;skip this line

mov.w #0x2222, r8 ;skip this line

bjk mov.w #0xAAAA, r9 ;load R9 with AAAAH

and.b #0x44, r9 ;AND 44H with the content of R9, save to R9

GPIO
General Purpose Input Output

21

Pinout

Figure. Pinout of MSP430F5529

* As can be seen from the figure, some pins of the
microcontroller has multiple functions, these functions can be
set through the software!
* Our MCU has totally 8 ports (P1,…P7, each port is 8-bit but
P8 is 3-bit) that can be configured for different purposes.

22

MSP430 LaunchPad Evaluation Kit

Figure. MSP430F5529 LaunchPad

P2.1 P1.1
P1.0

P4.7

23

Input and Output

Input refers the data transfer TO the microcontroller(MCU)
Output refers the data transfer FROM the microcontroller(MCU)MCU Input

Output

* There are special function registers that allow the Ports to
be configured as input and/or output
* Moreover, while some pins of a port can be configured as
inputs others can be configured as outputs.

24

Port Registers
It allows the user to configure the target port as an Input and/or Output. It is 8-bit register.

‘x’ is the port number (from 1 to 8)

Bit = 1: The port pin is set up as an output;

Bit = 0: The port pin is set up as an input.

Ex. Write the program that configures the Port 1’s all bits as output

mov.b #0xff, r5 ;load R5's LSB with FFH

mov.b r5, P1DIR ;PIDIR=FFH

** Therefore, all pins of Port 1 are outputs

(P1.0, P1.1, P1.2, P1.3, P1.4, P1.5, P1.6, P1.7)

While the number before ‘.’ shows port number, the one after ‘.’ shows bit(pin) number.

Direction Registers, PxDIR

25

Port Registers
Output Registers, PxOUT

It allows the user to send the desired data to the output port. Its width is 8-bit.

‘x’ is the port number (from 1 to 8)

Ex. Write the program that turns on the LED on P4.7

mov.b #0x80, r5 ;load R5's LSB with 80H (10000000)

mov.b r5, P4DIR ;P4DIR=80H, Only P4.7 is output, others are inputs

mov.b #0x80, P4OUT ;Turn ON P4.7, 10000000.

26

Port Registers

Ex. Write the program that toggles (ON and OFF) the P1.0 continuously.

mov.b #0x01, r5 ;load R5's LSB with 01H

mov.b r5, P1DIR ;P1DIR=01H, Only P1.0 is output, others are inputs

OFF mov.b #0x00, P1OUT ;Turn OFF P1.0

mov.b #0x01, P1OUT ;Turn ON P1.0

jmp OFF ;jump to label OFF

Output Registers, PxOUT

27

Port Registers
Input Registers, PxIN

It allows the user to receive the desired data from the input port. Its width is 8-bit.

‘x’ is the port number (from 1 to 8)

It is read-only register, which means data inside the registers can be read but not
written.

PxIN configuration:

Bit = 1: The input is high;

Bit = 0: The input is low;

28

Port Registers
Ex. Run the following program and discuss about the sense.

mov.b #0xFF, P1DIR ;Entire Port1 is output

mov.b #0xFF, P4DIR ;Entire Port4 is output

mov.b #0x00, P4OUT ;Clear Port4, recommended to clear at start

mov.b #0x00, P1OUT ;Clear Port1

mov.b #0x00, P2DIR ;Entire Port2 is input

mov.b P2IN, r9

cmp #0xFD, r9

jz zero

mov.b #0xFF, P4OUT

jmp Done

zero mov.b #0xFF, P1OUT

Done

MSP430F5529 LaunchPad has logic 1 at its input
pins (P2.1, P1.0, P4.7 and P1.1) as default.

Therefore, if no button pressed at P2, the data
that is read in P2IN is FFH.

If the button at P2.1 is pressed (logic 0), the data
that is read in P2IN is FDH

Program flow is controlled by the state of the
button at P2.1 on the board

29

Port Registers
Port Function Select Registers (PxSEL1 and PxSEL0)

We use the Port Function Select (PxSEL) registers to tell the MCU which function to
use, including whether to make the signal pin a digital input/output. The
MSP430F5529 has more than two functions assigned to most of its pins, so it
requires two bits to control the function selection.

Since PxSEL registers have 0 default value, we don’t have to configure them for
GPIO applications.

PxSEL1 PxSEL0 Function

0 0 Digital I/O (Default)

0 1 Primary Function

1 0 Reserved

1 1 Secondary Function

