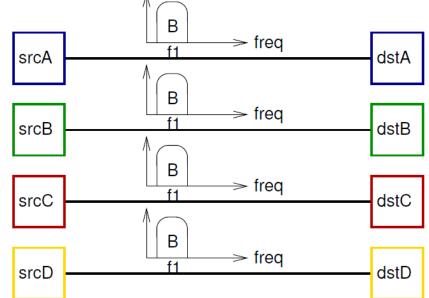
EEE 432 Introduction to Data Communications

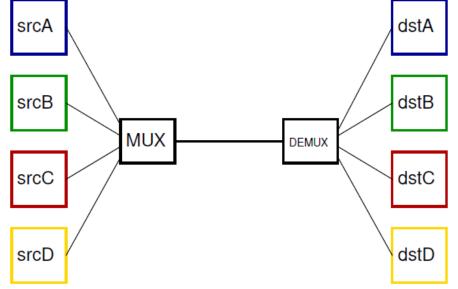
Asst. Prof. Dr. Mahmut AYKAÇ

MULTIPLEXING

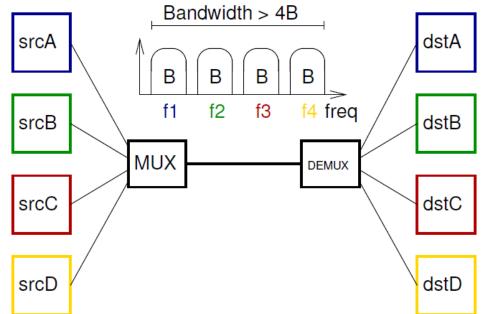

Course Information

- 1. Data Communications and Networks
- 2. Data Transmission
- 3. Transmission Media
- 4. Signal Encoding Techniques
- 5. Digital Data Communication Techniques
- 6. Multiplexing
- 7. Networking and Protocol Architectures

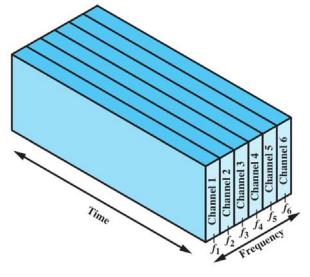
- 8. Switching
- 9. Routing in Switched Networks
- 10. LANs and WANs
- 11. Ethernet
- 12. The Internet


Supporting Multiple Users

- Multiple users in one location want to communicate with multiple users in another location
- Option 1: one link (line) per pair of users
- Each user has dedicated link, no interference
- Wasteful of resources; hard to expand
- But it comes with an advantage, since we have
 4 cables for 4 links (for the figure given nearby),
 even though the frequency of the signals are
 equal, signals are not interfering each other.


Multiplexing

- A single line connects two locations via special devices.
- Multiplexer (MUX) combines signals from each source user, and transmits one signal
- Demultiplexer (DEMUX) splits received signal into separate signals and sends to destination users
- How to combine signals from multiple users?
- There are two basic approaches, which are Frequency Division Multiplexing (FDM) and Time Division Multiplexing (TDM)


Frequency Division Multiplexing (FDM)

- Signals from each user are transmitted at same time, but **different frequencies**
- f1, f2, f3 and f4 are center frequencies of the each signal.
- The idea is that we can transmit one signal but that signal actually contains the signals of those four different users. ($f1 \neq f2 \neq f3 \neq f4$) For example; TV channels

Frequency Division Multiplexing (FDM)

- FDM possible when useful bandwidth of medium exceeds required bandwidth of signals
- Each signal modulated onto different carrier frequency, sufficiently separated so signals do not overlap
- As long as the channels use different center frequencies, it doesn't matter they are transmitted at the same time

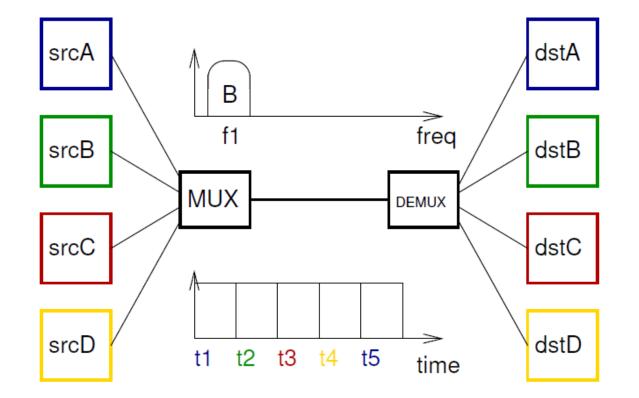
Remember the remote controller of a TV..

When we change the channel by using the remote controller, in fact, we tune the TV to the desired frequency of the TV station.

Fig. Another view of FDM

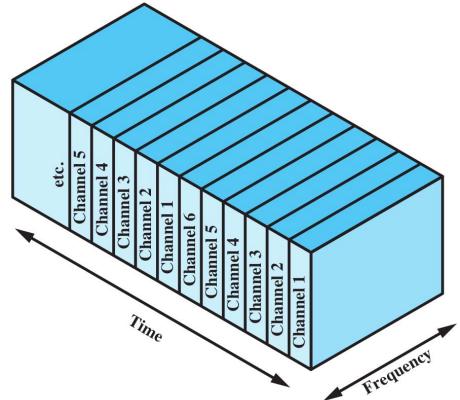
Frequency Division Multiplexing (FDM)

• Ex: Imagine we have a link between the points A and B and this link has a bandwidth of 100kHz. If the bandwidth for the per user is 15kHz. How many users can we support by using this link?



➢ If we try to insert 7 users, total bandwidth requirement will be 7*15= 105kHz and it is not possible to since we have totally 100kHz of bandwidth.

> If we try to insert 6 users, total bandwidth requirement will be 6*15=90kHz and we can also insert 2kHz of space between the users (to prevent the interference).


Time Division Multiplexing (TDM)

• Signals from each user are transmitted on same frequency, but at different times.

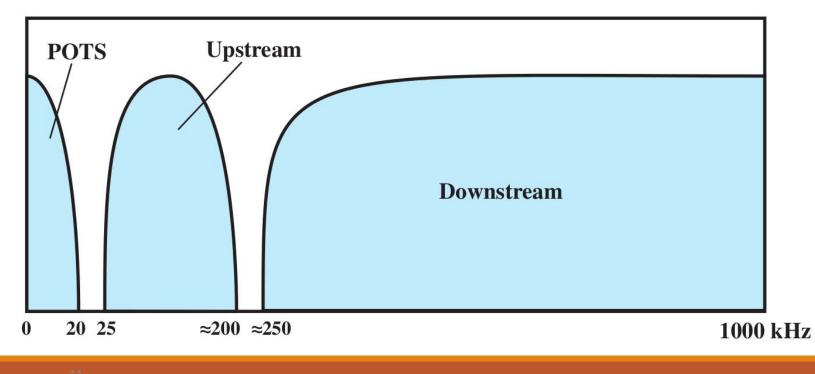
Time Division Multiplexing (TDM)

- Multiple digital signals carried on single transmission path by transmitting portions of each signal one at a time
 - Synchronous TDM
 - Statistical TDM

Example Multiplexing Technologies

• FDM

- Broadcast and cable TV, radio
- > Long-distance carrier system deployed by telecom operators
- > Optical fibre: Wavelength Division Multiplexing


> ADSL

• TDM

- > Digital carrier systems to replace FDM carrier systems (T-hierarchy, PDH)
- > SONET/SDH
- Trade-off
- > FDM requires larger bandwidth, therefore costs more. Higher performance
- > TDM requires narrower bandwidth, therefore costs less. Lower Performance

FDM Example: ADSL

- Plain Old Telephone Service (POTS), voice calls: 0 20 kHz
- Uplink data to Internet Service Provider (ISP): 25 200 kHz
- Downlink data from Internet Service Provider (ISP): 250 1000 kHz

TDM Example: SONET/SDH Signal Hierarchy

- PDH (T1, T2, E1, . . .) used electrical digital signals for connections between buildings, cities, countries: upto about 500 Mb/s
- Gradually replaced with SONET (US) and SDH (rest of world), which uses optical carrier (OC) signals.

SONET Designation	ITU-T Designation	Data Rate	Payload Rate (Mbps)
STS-1/OC-1		51.84 Mbps	50.112 Mbps
STS-3/OC-3	STM-1	155.52 Mbps	150.336 Mbps
STS-12/OC-12	STM-4	622.08 Mbps	601.344 Mbps
STS-48/OC-48	STM-16	2.48832 Gbps	2.405376 Gbps
STS-192/OC-192	STM-64	9.95328 Gbps	9.621504 Gbps
STS-768	STM-256	39.81312 Gbps	38.486016 Gbps
STS-3072		159.25248 Gbps	153.944064 Gbps