EEE 204
Microcomputer
Organization

Asst. Prof. Dr. Mahmut AYKAC

CHAPTER 3

3.1 Base Microcomputer Structure

The minimal hardware configuration of a microcomputer system is composed of
three fundamental components: a Central Processing Unit (CPU), the system
memory, and some form of Input/Output (I/O) Interface.

* Central Processing Unit (CPU): The CPU forms the heart of the microcontroller
system. It retrieves instructions from program memory, decodes them, and
accordingly operates on data and/or on peripherals devices in the Input-Output
subsystem to give functionality to the system. (Ex: Intel Core 17, AMD Ryzen)

* System Memory: The place where programs and data are stored to be accessed by
the CPU is the system memory. (Program Memory and Data Memory)

* Input/Output Subsystem: The 1I/O subsystem, also called Peripheral Subsystem
includes all the components or peripherals that allow the CPU to exchange
information with other devices, systems, or the external world.

* System Buses: The set of lines interconnecting CPU, Memory, and |/O Subsystem
are denominated the system buses.

3.1 Base Microcomputer Structure

System Memory

Data Program

Central S s
Processing Unit ystem Buses
Voo fok Reset
Power & Timing Input=Output
Support Subsystem

Figure. General architecture of a microcomputer system

3.2 Microcontrollers Versus Microprocessors

* A Microprocessor Unit, commonly abbreviated MPU, fundamentally contains a general purpose
CPU in its die. The buses, memory, and 1/O interfaces, are implemented externally
(Ex: Intel 8085, Arm Cortex- M Series).

* A Microcontroller Unit, abbreviated MCU, is developed using a microprocessor core or Central
Processing Unit (CPU), usually less complex than that of an MPU. This basic CPU is then surrounded
with memory of both types (program and data) and several types of peripherals, all of them
embedded into a single integrated circuit, or chip. This blending of CPU, memory, and 1I/O within a
single chip is what we call a microcontroller. (Ex: PIC16F877, Atmega 328P)

MCU MPU

Figure. MCU vs MPU

3.2 Microcontrollers Versus Microprocessors

* CISC (Complex Instruction Set Computing) machines are characterized by variable
length instruction words, i.e., with different number of bits, small code sizes, and
multiple clocked-complex instructions at machine level. CISC architecture focuses in
accomplishing as much as possible with each instruction, in order to generate
simple programs. This focus helps the programmer’s task while augmenting
hardware complexity. (For ex. Intel, AMD CPUs)

* RISC (Reduced Instruction Set Computing) machines, on the other hand, are
designed with focus on simple instructions, even if that results in longer programs.
This orientation simplifies the hardware structure. The design expects that any
single instruction execution is reduced at most a single data memory cycle when
compared to the “complex instructions” of a CISC system. (For ex: Microcontroller
CPUs)

Embedded systems programmers need to consider both the hardware and software
issues. Hence, they need to look at the system both from a hardware point of view,
the hardware model, as well as a software point of view, the programmer’s model.

3.3 Central Processing Unit

The Central Processing Unit (CPU) in a microcomputer system is typically
microprocessor unit (MPU) or core. The minimal list of components that define the
architecture of a CPU include the following:

* Hardware Components:

— An Arithmetic Logic Unit (ALU)
— A Control Unit (CU)

— A Set of Registers

— Bus Interface Logic (BIL)

* Software Components:

— Instruction Set

— Addressing Modes

3.3 Central Processing Unit

* The Arithmetic Logic Unit (ALU) is the CPU component where all logic and arithmetic
operations supported by the system are performed. Basic arithmetic operations such as
addition, subtraction, and complement, are supported by most ALUs.

* Logic operations performed in the ALU may include bitwise logic operations AND, OR, NOT,
and XOR, as well as register operations like SHIFT and ROTATE.

* The Control Unit (CU) governs the CPU operation working like a finite state machine that
cycles forever through three states: fetch, decode, and execute, as illustrated in Figure.

Reset

Comed (o

Figure. Fetch, Decode and Execute Cycle

3.3 Central Processing Unit

* Fetch State: During the fetch state a new instruction is brought from memory into the CPU
through the bus interface logic (BIL). The program counter (PC) provides the address of the
instruction to be fetched from memory. The newly fetched instruction is read along the data
bus and then stored in the instruction register (IR).

* Decoding State: After fetching the instruction, the CU goes into a decoding state, where
the instruction meaning is deciphered. The decoded information is used to send signals to
the appropriate CPU components to execute the actions specified by the instruction.

* Execution State: In the execution state, the CU commands the corresponding CPU
functional units to perform the actions specified by the instruction. At the end of the
execution phase, the PC has been incremented to point to the address of the next
instruction in memory. Step 2: Decode instructions Step 3: Execute commands

into commands | |
Fetch, Decode and Execute

Step 1: Control Unit H ALU Ston 4. chle sFarts with fetching an
Fetch i) instruction from memory and
) : Store results)] .
instruction in memory ends with storing the results in
from memory Main Memory the memory

3.3 Central Processing Unit

* The Bus Interface Logic (BIL) refers to the CPU structures that coordinate the
interaction between the internal buses and the system buses. The BIL defines how
the external address, data, and control buses operate.

* CPU Registers provide temporary storage for data, memory addresses, and control

information in a way that can be quickly accessed. They are the fastest form of
information storage in a computer system, while at the same time they are the
smallest in capacity. Register contents is volatile, meaning that it is lost when the
CPU is de-energized.

* General Purpose Registers (GPR) are those not tied to specific processor functions
and may be used to hold data, variables, or address pointers as needed.

3.3 Central Processing Unit

Special Purpose (function) Registers perform specific functions that give
functionality to the CPU. The most basic CPU structure includes the following four
specialized registers:

* Instruction Register (IR) register holds the instruction that is being currently
decoded and executed in the CPU.

* Program Counter (PC), also called Instruction Pointer (IP) register holds the
address of the instruction to be fetched from memory by the CPU.

* Stack Pointer (SP), The stack is a specialized memory segment used for temporarily

storing data items in a particular sequence. The operations of storing and retrieving
the items according to this sequence is managed by the CPU with the stack pointer
register (SP).

* Status Register (SR), also called the Processor Status Word (PSW), or Flag Register
contains a set of indicator bits called flags, as well as other bits pertaining to or
controlling the CPU status.

3.3 Central Processing Unit

» Zero Flag (ZF or Z): Also called the zero bit. It is set when the result of an ALU
operation is zero, and cleared otherwise.

* Carry Flag (CF or C): This flag is set when an arithmetic ALU operation produces a
carry.

* Negative or Sign flag (NF or N): This flag is set if the result of an ALU operation is
negative and cleared otherwise.

* Overflow Flag (VF or V): This flag signals overflow in addition or subtraction with
signed numbers. A negative sum of positive operands (or vice versa) is an overflow.

* Interrupt Flag (IF): This flag, also called General Interrupt Enable (GIE), is not
associated to the ALU. It indicates whether a program can be interrupted by an
external event (interrupt) or not.

3.3 Central Processing Unit

Example 3.1 The following operations are additions performed by the ALU using
8-bit data. For each one, determine the Carry, Zero, Negative, and Overflow flags.

01001010 + 10110100 + 10011010 + 11001010 +
01111001 = 01001100 = 10111001 = 00011011 =
0 11000011 1 00000000 1 01010011 0 11100101
Tt T T T1
CN CN CN N

Solution: The operands have eight bits, so this length is our reference for the
flags when we look at the result. The most significant bit in this group is flag N. The
bit to the left is C. In hex form, these additions are, respectively, 4Ah + 79h = C3h;
B4h + 4Ch = 100h; 9Ah + B9h = 153h; and CAh + 1Bh = E5h. The zero flag is
set if the result is 0, discarding the carry, and the overflow flag is set if the addition
of numbers of the same sign (that is, with equal most significant bit) vield a result of
different sign (signaled by N). With this information we have then:

Operation4Ah+79h =C3h: C=0, N=1, Z=0and V = 1.
Operation B4h +4Ch =100h: C=1, N=0, Z=1andV = 0.
Operation9Ah +B%h = 153h: C=1, N=0, Z=0and V = 1.
Operation CAh+ 1Bh=E5h: C=0, N=1, Z=0andV =0.

3.3.5 MISP430 CPU Basic Hardware Structure

The MSP430 family is based on a 16-bit CPU which was introduced in the early
models of the series 3xx.

Registers: They are high-speed memory units, which are in CPU, that can also be
accessed by the CPU for fast operations.

MSP430 Registers: There are sixteen 16-bit registers in the MSP430 CPU named RO,
R1..., R15. Registers R4 to R15 are of the general purpose type. The specialized
purpose registers are:

e Program Counter register, named RO or PC.
e Stack Pointer Register, named R1 or SP.

e Status Register, with a dual function also as Constant Generator. It is named R2, SR
or CG1.

e Constant Generator, named CG2 or R3.

3.3.5 MSP430 CPU Basic Hardware Structure

* Status Register The SR register has the common flags of Carry (C), Zero (Z), Sign or
Negative (N), overflow (V) and general interrupt enable (GIE). It contains in addition
a set of bits, CPUOFF, OSCOFF, SCG1 and SCGO, used to configure the CPU, oscillator
and power mode operations.

* Arithmetic-Logic Unit: TheMSP430 CPU ALU has a 16-bit operand capacity; the
CPUX has 16- or 20-bit operand capacity. It handles the arithmetic operations of
addition with and without carry, decimal addition with carry.

15 9 8 7 0

OSC|CPU
Reserved V| SCG1 | SCGO OFF |OFF GIE|N|Z|C

Y

Figure. Status Register (SR) of MSP430

3.4 System Buses

Memory and 1/O devices are accessed by the CPU through the system buses. A bus is
simply a group of lines that perform a similar function. Each line carries a bit of
information and the group of bits may be interpreted as a whole. The system buses are
grouped in three classes: address bus, data bus, and control bus.

* The set of lines carrying data and instructions to or from the CPU is called the data
bus.

* The CPU interacts with only one memory register or peripheral device at a time. Each
register, either in memory or a peripheral device, is uniquely identified with an
identifier called address. The set of lines transporting this address information form the
address bus. The width of the address bus determines the size of the largest memory
space that the CPU can address. (Ex: 64-bit Intel or AMD CPUs)

* The control bus groups all the lines carrying the signals that regulate the system
activity. Unlike the address and data buses lines which are usually interpreted as a
group (address or data), the control bus signals usually work and are interpreted
separately.

3.5 Memory Organization

The memory subsystem stores instructions and data. Memory consists of a large
number of hardware components which can store one bit each. These bits are
organized in n-bit words, working like a register, usually referred to as cell or

location.

Memory
Addre

Memory

Addressius>
CPU Control Bus >

% :Datasu;s>

FFFF
FFFE

0002

0001
0000

B6

27

4A

FF

18

L

System
Buses

Memory

Cell

Memory
Word

Figure. Memory structure of 64kB memory

There is one byte in one address (byte addressing)
Address: Data

0000: 18

0001: FF

0002: 4A

FFFE: 27

FFFF: B6

3.5 Memory Organization

* Hardware memory is classified according to two main criteria: storage permanence and
write ability.

* From the storage permanence point of view, the two basic subcategories are the
nonvolatile and volatile groups.

Storage Memory In-system | Comments
‘Writable
Masked ROM No Non programmable
OTPROM No One time programmable
with programming device
EPROM No Erasable and programmable
Nonvolatile with external device

Slow to erase/write.
Not advisable to write

EEPROM Yes during program execution.
Requires higher voltage.
Flash Yes Similar to EEPROM
FRAM Yes IFast to write at low voltage
Static RAM Yes Fastest to write/read
Volatile ;
DRAM Yes Fast to write/read

Figure. Memory types

3.5 Memory Organization

A microcomputer includes two differentiable types of memory depending on the kind of
information they store: Program Memory and Data Memory.

* Program Memory (Flash), as inferred by its name, refers to the portion of memory that
stores the system programs in a form directly accessible by the CPU. A program is a logical
sequence of instructions that describe the functionality of a computer system.

* Data Memory (RAM) is used for storing variables and data expected to change during
program execution. Therefore, this type of memory should allow for easily modifying its
contents. Most embedded systems implement data memory in RAM (Random Access

Memory).

Program Memory

Figure. System Memory (Program Memory and Data Memory)

3.5.4 lon Neumann and Harvard Architectures

* Systems with a single set of buses for accessing both programs and data are said to
have a Von Neumann architecture or Princeton architecture.

* An alternate organization is offered by the Harvard Architecture. This topology has

physically separate address spaces for programs and data, and therefore uses
separate buses for accessing each. Data and address buses may be of different
width for both subsystem:s.

(a) (b)
Program and Program Data
Data Memory Memory Memory
Texas Instruments MSP430 series
Buses architecture!!
CPU CPU

Figure. (a) Von Neumann arch., (b) Harvard arch.

3.5.6 Memory Map

A memory map is a model representation of the usage given to the addressable
space of a microprocessor based system. It is an important tool for program planning
and for selecting the convenient microcontroller for our application. As implied by its
name, the memory map of a microcomputer provides the location in memory of
important system addresses.

Address(Hex)

(a) orFFFfn

0EO00h

Program Memory

ODFFFh

00300h

Unused Space

002FFh
00200h

Data Memory

001FFh

00010h

I/O Peripherals

0000Fh
00000h

Function Registers

(b)

P

001FFh
00100h

Parallel Port A

000FFh
00080h

Serial Controller

0007Fh
00020h

Display Controller

0001Fh
00010h

Analog-to-digital Converter

e]

Figure. Example memory map for a
microcomputer with a 16-bit address
bus. (a) Global memory gap, (b) Partial
memory map for I/O peripherals

3.5.7 M5P430 Memory Organization

* The address bus width depends on the microcontroller model. All models are based
on the original 16-bit address bus with an address space of 64KBytes, called simply

the MSP430 architecture. The extended MSP430X architecture has a 20-bit address
bus with an address space of 1Mbyte.

* The amount of RAM and Flash or ROM (Flash memory is also a category of ROM
memory) depends on the model. RAM memory, which may start with only 128 bytes
of capacity, usually starts at address 0200h, and ends depending on the model.
Similarly, in the 16-bit model, the Flash/ROM memory ends at address OFFFFh but
the start depends on the capacity.

3.6 1/0 Subsystem Organization

* The 1/0O subsystem is composed by all the devices (peripherals) connected to the
system buses, other than memory and CPU. The I/O designation is collectively given
to devices that serve as either input, output, or both in a microprocessor-based
system, and also includes special registers or devices used to manage the system
operation without external signals.

* Examples of input devices include switches and keyboards, barcode readers,
position encoders, and analog-to-digital converters (ADC).

* Qutput devices include LEDs, displays, buzzers, motor interfaces, and digital-to-
analog converters (DAC).

3.6.2 Parallel Versus Serial I/O Interfaces

* In microcomputer-on-a-chip systems, most peripherals are connected to the data
bus via a parallel interface, i.e., all bits composing a single word are communicated
simultaneously, requiring one wire per bit. But I/O ports interacting with devices
external to the system, may connect via parallel or serial interfaces. The ports are
then referred to as parallel 1/O ports and serial 1/O ports. Serial interfaces require
only one wire to transfer the information, sending one bit at a time.

Parallel Port (DB25)

Py ~
ﬂ\‘hxh tion
sens e s) N P | SR

i Qe

ok 0 wost
108 PP s w A\ q sex)

- = ¥533399 : o
< = .

. TRE SE SF AF AT AT AT AT AT A0 AF SF N To8 3
' A et - by N 4B ‘anu H o] ARDUINO NANO Micro SD Card Module
3, ST AT ST AT AT AP ST AT ST S AF &7 3
7 W R LA TICL T I LS A i nomA:
. B

Microcontr olter A RE——— 11.—:=:l:~§

Ll e
A8 N - NS

Figure 1. Parallel Communication
Figure 2. Serial Communication examples, UART and SPI

3.6.5 MSP430 I/0 Subsystem and Peripherals

MSP430 microcontroller models, as most microcontrollers, usually have more
peripherals than necessary for a given application. Therefore, to minimize resources,
several modules may share pins.

o
E % By
23238 B Eis
I TR
EXEELaIdrRELSS53aa s
SRREERRERREIREEG88322%
P64/CBA/A4 [1 | &0 [0 PT.7TBOCLKMCLK
poscoms 5 i | prammos Most of the pins are shared as seen
P7 0CRRAL?] 5 % s 701 . . .
Praceans e b Rt in the figure. For ex: Pins 37, 38, 39
P7.3CBIVAIS (] & 53 P4 N
P tnownes - | - 51 heam S vearon and 40 are shared to save space for
aveer o n MSP430F5525IPN 50 [OV
eésroun o e apremmamcnse the chip on the target board.
P8O :: ::] P4.1/PM_UCB1SIMO/PM_UCB1SDA . .
po1e 15) P4 GPMLUCBISTERM. UCATCLK Otherwise, chip would cover more
DVCC1] 18 43 | P36TBO.6
VCORE % 4 B PaaucANROUCAISOM Space-
ANRICRLRERRSNIZIREERES
EEEEE&%E&E%&Etgﬁgggg
g ‘:‘-’ 5 §m§§gg
. S S 2
: : £ga
O
tggfy
Figure 1. MSP430F5529 Pinout

3.7.2 Machine Language and Assembly Instructions

To avoid using binary or hexadecimal representation for instruction words,
scientists and engineers devised high level and assembly languages. Java, C, and
Basic belong to the first group. Instructions in assembly language, the first to
appear, on the other side, are the same as machine language. That is, each assembly
instruction is associated with one, and only one, machine language instruction.

Assembly
source

——>t Assembler

Other object I
files & libraries

Objet
file

!

Machine
language

Assembly
language

480D
5079 006B
23F1
1300

mov R8,R13
add.b #0x6B,R9
jnz O0x3E2

reti

Linker F—>

Execulable
file

Figure. Basic Assembly process

Machine
language

Assembly
language

CR8 34
coo07
7E 10 00
5C

EORB #$34
LDD #7
JMP $1000
INCB

3.7.4 The Stack and the Stack Pointer

The stack, a specialized volatile memory segment used for temporarily storing
data, is managed with the Stack Pointer (SP), both by programming or by the CPU

itself. To store data in this segment using a stack transaction is to push. Retrieving a
datum from the stack is to pop, or to pull.

3.7.5 Addressing Modes

Addressing modes can be defined as the way in which an operand is specified
within an instruction so as to indicate where to find the data with which the
operation is executed. The addressing mode is denoted using a specific syntax
format, proper of the microcontroller family. Instructions with implicit operands are
said to use Implicit Addressing Modes.

In general, the data to be used or stored in a transfer or in an arithmetic or logic
instruction can be located in only one of the following possible places:

1. It may be explicitly given
2. It may be stored in a CPU register
3. It may be stored at a memory location, or

4. It may be stored in an |/O port or peripheral register

3.7.5 Addressing Modes

* Addressing modes in computer architecture refer to the techniques and rules used by
processors to calculate the effective memory address or operand location for data
operations.

* Simply, addressing modes tell us how to use the instructions and operands (source and
destination)

Assembly RTN (Register Transfer Notation) Comment

mov src,dest dest < src Copy or load source to destination

add src,dest dest < dest + src Add source to destination

sub src,dest dest < dest — src Subtract source from destination

and src,dest dest < dest .AND. src Bitwise AND source to destination

Xor src,dest dest <« dest . XOR. src Bitwise XOR source to destination

cmp src,dest dest — src Compare does not affect dest., only flags

Table. Addressing mode examples

3.9 Introduction to Interrupt and Reset

The topic of interrupts and resets involve both hardware and software subjects,
but it is also closely related to how a CPU operates.

* An Interrupt is a response by the processor to an event that needs attention from
the software. An interrupt condition alerts the processor and serves as a request for
the processor to interrupt the currently executing code when permitted, so that the
event can be processed in a timely manner.

* A Reset is an asynchronous signal that when fed to an embedded system causes
the CPU and most of the sequential peripherals to start from a predefined, known
state.

3.11 The TI MSP430 Microcontroller Family

All MSP430 family members are developed around a 16-bit RISC CPU with a Von-Neumann
architecture. The assortment of peripherals and features in each MSP430 device varies from one

series to another, and within a series from one family member to another. Common features to
devices include:

* Standard 16-bit Architecture: All devices share the same core 16-bit architecture and instruction
set. The 20-bit CPUX registers are also based on this architecture.

* Different Ultra Low-Power Operation modes: The devices can operate with nominal supply voltages
from 1.8V to 5.5V. The nominal operating current at 1MHz ranges from 0.1 pA to 400 pA, depending
on the supply voltage. The wake-up time from standby mode is 6 pS.

* Flexible and Powerful Processing Capabilities: The programmer’s model provides seven source-
address modes and four destination-address modes with 27 core instructions. Extensive interrupt
capability with prioritized, nested interrupts with unlimited depth level. A large register file with
RAM execution capability, table processing, and hex-to-decimal conversion modes.

3.11 The TI MSP430 Microcontroller Family

* Extensive, memory-mapped peripheral set including: a 14-bit SAR A/D converter, multiple timers
and PWM capability, slope A/D conversion (all devices); integrated USART, LCD driver, Watchdog
Timer, multiple I/O lines with interrupt capability, programmable oscillator, 32-kHz crystal oscillator
(all devices).

* Versatile device options include:

— Masked ROM

— OTP and EEPROM models with wide temperature range of applications
— Models with ferroelectric memory

— Up to 64K addressing space for the MSP430 and 1M for the MSP430X
— Memory mixes to support all types of applications.

* JTAG/debugger element, used for debugging embedded systems directly on the chip.

3.12.2 Programming and Debugging Tools

* Among the programming and debugging tools we have MSP430 simulators, C compilers and
assemblers, linkers, and real time operating systems (RTOS).

* In the content of the lecture, we use Code Composer Studio (CCS).

Site Simulator C compiler Assembler Linker
CCS X X X X

IAR X X X X
mspgcc X X X
naken X X X
pds-430 X X X

cdk4msp X

mcc-430 X

Table. Programming and debugging tools for MSP430

