
EEE 204
Assembly Language Programming

on Embedded Processor

CHAPTER 4

Asst. Prof. Dr Mahmut AYKAÇ

2

Assembly Language Programming
Programs are written using a programming language with specific rules of syntax.
These languages are found in three main levels:

a) Machine language,

b) Assembly language, and

c) Level language

The complete MSP430 instruction set consists of 27 core instructions and 24
emulated instructions. The core instructions are instructions that have unique op-
codes decoded by the CPU. The emulated instructions are instructions that make
code easier to write and read, but do not have op-codes themselves, instead they
are replaced automatically by the assembler with an equivalent core instruction.

Opcode: The machine language code which defines the operation to be performed.

3

Assembly Language Programming

4

Assembly Language Programming

5

Assembly Language Programming
There are three core-instruction formats:

• Dual-operand

• Single-operand

• Jump

All single-operand and dual-operand instructions can be byte or word instructions
by using .B or .W extensions. Byte instructions are used to access byte data or
byte peripherals. Word instructions are used to access word data or word
peripherals. If no extension is used, the instruction is a word instruction.

6

MOV Instruction
MOV(.B or .W) src,dst; dstsrc, move source to destination

The source is copied to the destination. The value in source is preserved. Type of source
and destination may vary according to the addressing mode.

Examples:

MOV #00FAh, R10; load constant FAh into R10

MOV @R12, R4 ;move the content of memory address indexed by the
content of R12 into R4

7

Addition
ADD(.B or .W) src,dst; dstsrc + dst, add source to the destination

The source operand is added to the destination and the result is placed in the
destination. The value in source is preserved.

Ex:
Add.b #3ah, r10; add 3AH to the content of R10 register

add @r4, r7; add the contents of the location pointed by R4 to R7

Note: In assembly language programming, it does not matter whether the letters are
capital or lower case. That is why some letters are intentionally chosen to be lower
case or capital. It is not a case-sensitive programming language, not like
C/C++.

8

Addition
ADDC(.B or .W) src,dst; dstsrc + dst+C, add source and carry to the destination.

The instruction is useful when trying to perform addition on numbers that are larger than 16-bits.

Ex: Add two 32- bit numbers E371FFFFh and 11112222h, whose addresses are 2000h and 2004h.
mov.w #2000h, R4 ;Loading the registers for the address of E371FFFFh
mov.w #2004h, R5 ;Loading the registers for the address of 11112222h
mov.w #2008h, R6;Loading the registers for the address of the sum
mov.w 0(R4), R7 ;Taking the lower parts
mov.w 0(R5), R8 ;Taking the lower parts
add.w R7, R8 ;Adding the lower parts without carry
mov.w R8,0(R6) ;Saving the lower part of the sum
mov.w 2(R4), R7 ;Taking the higher parts
mov.w 2(R5), R8 ;Taking the higher parts
addc.w R7, R8 ;Adding the higher part with carry
mov.w R8,2(R6) ;Saving the higher part of the sum

FFFFH
E371h
2222H

1111H

2000H
2002H
2004H

2006H
-2008H

200AH -

FFFFH
E371H
2222H
1111H

2000H
2002H
2004H
2006H
2008H
200AH F483h

2221H

1st Number

2nd Number

Sum Sum

1st Number

2nd Number

9

Example…
Write an assembly language program that adds 785H and 683H and save the result
into the memory location addressed by 33FFh address.

mov.w #0x785,r4 ;r4=0785h

mov.w #0x683,r5 ;r5=0683h

add.w r4,r5 ;r5=r4+r5

mov.w #0x33FF,r6 ;r6=33FFh

mov.w r5,0(r6) ;r5(33FFH)

10

Subtraction
SUB (.B or.W)src, dst; dstdst-src, The source is subtracted from the
destination and the result is saved in destination. The value in source is preserved

mov #0x1234, r4

sub #4, r4; subtract 4 from the content of R4 register

R4 1234H SUB 4 R4 1234H - 4 =1230H

11

Subtraction
What if the result is negative?? Let’s make it clear with the similar example

Ex. Write the following program and observe the output.

mov.w #0x2345,r4 ;r4=2345h

mov.w #0x5789,r5 ;r5=5789h

sub r5,r4 ;r4=r4-r5

R4 2345H SUB R5 5789H R4 2345H - 5789 =CBBCH

N 1 Negative flag bit in status register becomes 1
since the result isnegative!

12

Subtraction
We can even make the byte operations even though R4 and R5 have words

Ex: Write the following program and observe the output.

mov.w #0x2345,r4 ;r4=2345h

mov.w #0x5789,r5 ;r5=5789h

sub.b r4,r5 ;r5=r5-r4

**If there is a byte operation (no matter what operation) on the registers, high
byte of the source register becomes 0 because the related operation occurs on the
low byte and the register is updated with the new content.

R5 5789H R4 2345H R5 89H-45H=0044HSUB.B

13

Subtraction
SUBC (.B or.W)src, dst; It performs binary subtraction on the src and dst operands, but also subtracts
not(C) from the status register that may have occurred from a prior subtraction dstdst-src-not(C). This
instruction is useful when trying to perform subtraction on numbers that are larger than 16-bits. The Borrow is
treated as a NOT carry.
Ex: Subtract 11112222h from E4651FFFh, whose addresses are 2000h and 2004h.
mov.w #2000h, R4;Loading the register for the address of E4651FFFh
mov.w #2004h, R5;Loading the register for the address of 11112222h
mov.w #2008h, R6;Loading the register for the addresses of the subt.
mov.w 0(R4), R7 ;Taking the lower parts
mov.w 0(R5), R8 ;Taking the lower parts
sub.w R8, R7;Subtracting the lower part without borrow
mov.w R7,0(R6);Saving the lower part of the subt.
mov.w 2(R4), R7;Taking the higher parts
mov.w 2(R5), R8 ;Taking the higher parts
subc.w R8, R7;Subtracting the higher part with borrow
mov.w R7,2(R6);Saving the higher part of the subt.

1FFFH
E465h
2222H
1111H

2000H
2002H
2004H

2006H

-2008H
200AH -

1FFFH
E465H
2222H
1111H

2000H
2002H
2004H
2006H
2008H
200AH D353h

FDDDh

1st Number

2nd Number

Subt. Subt.

1st Number

2nd Number

14

Bitwise Logic
AND (.B or .W) src, dst ;The bits in the source and destination are ANDed and
the result is saved in the destination.Source is not effected.

Ex: Assume contents of the registers and memory before any instruction as
R12= 25A3h = 0010010110100011b, R15= 8B94h= 1000101110010100b

mov.w #0x25A3, r12

mov.w #0x8b94, r15

and.w r15, r12

R12 25A3H R15 8B94 R12 0180HAND.W

15

Bitwise Logic
BIT (.B or .W) src, dst ; Identical to AND except the final value of destination.
After BIT operation source and destination are preserved. Only changing occurs in Status
registerbitssuchasN,C,V,andZ.

Ex:Assume contents of the registers and memory before any instruction as

R12 = 25A3h = 0010010110100011, R15 = 8B94h = 1000101110010100

mov.w #0x25A3, r12

mov.w #0x8b94, r15

bit.w r15, r12

R12 25A3H

R12 25A3H BIT.W 8B94H

R15 8B94H

16

Bitwise Logic
XOR (.B or .W) src, dst; Source and destination are XORed and the result is saved to

destination.

Ex:Run thefollowingprogramand observe theoutput.

mov.w #0x17E1, r15

xor.b #0x75, r15

OPERATION
1110 0001(E1H)
0111 0101(75H)
1001 0100(94H)

⊕

R15 17E1H XOR.B 0x75 R15 0094H

17

Bitwise Logic
OR (.B or .W) src, dst; Source and destination are ORed and the result is saved

in the destination.

Ex:Run the followingprogramand observe the output

mov.w #0x17E1, r15

or.b #0x75, r15
OPERATION

1110 0001 (E1H)
0111 0101(75H)

OR
1111 0101 (F5H)

R15 17E1H OR.B 0x75 R15 00F5H

18

Bitwise Logic
INV (.B or .W) dst; Inverts all the bits in the destination. Result is saved in the

destination.

Ex:Run the followingprogramand observe the output

mov.w #0x1903, r9

inv r9

OPERATION
0001 1001 0000 0101 (1903H)

INV
1110 0110 1111 1010 (E6FCH)

R9 1903H INV R9 R9 E6FCH

19

Compare and Test
CMP (.B or .W) src, dst; Compare source to destination, subtracts source from

destinationbutboth arepreserved. Only statusregister is changed.

Ex:Run the followingprogramand observe the output.

mov.w #0x1234, r13

mov.w #0x4567, r14

cmp r14, r13

R13 1234H CMP R14 4567H

R13 1234H

R14 4567H

N 1

R13 and R14 are
preserved but N becomes
1 since the result of
subtraction is negative,
other flag bits are 0.

20

Compare and Test
TST (.B or .W) dst; Test the destination for zero condition. It is very useful since
mov instruction does not affect zero flag. It actually subtracts zero from the destination and
check the result.

Ex:Verify the contentof R12 is zeroor not

mov.w #0x1903, r12

tst r12

R12 1903H TSTR12

R12 1903H

Z 0

R12 is preserved and Z
becomes 0 since the
result of the subtraction
is NOT 0!

21

Compare and Test
SXT (only .W) dst; Sign extend destination, sign of the low byte is copied to the

high byte. dst(bits 8<-->15) = dst(bit 7)

Ex: Run following programs and observe the R10 content

mov.w #0x3458, r10 mov.w #0x34E8, r10

sxt r10 sxt r10

R10 3458H
01011000

Sign of the low byte
is positive. Therefore,
write 0 to all bits of
high byte of R10

SXTR10 R10 0058H R10 34E8H
11101000

Sign of the low byte is
negative. Therefore,
write 1 to all bits of
high byte of R10

SXTR10 R10 FFE8H

22

Increment
INC(.B or .W)dst; Increment destination. The destination is incremented by 1

Ex. mov.b #0x45, r7;copy 45H to r7 register

inc.b r7;increase r7 content by 1, content of R7 is 46H now

inc.b r7;increase r7 content by 1, content of R7 is 47H now

inc.b r7;increase r7 content by 1, content of R7 is 48H now

R7 0045H R7 0046H INC.B R7 0047H INC.B R7 0048H INC.B

23

Increment
INCD(.B or .W)dst; Increment destination. The destination is incremented by 2

Ex. mov.b #0x45, r7;copy 45H to r7 register

incd.b r7;increase r7 content by 2, content of R7 is 47H now

incd.b r7;increase r7 content by 2, content of R7 is 49H now

incd.b r7;increase r7 content by 2, content of R7 is 4BH now

R7 0045H R7 0047H INCD.B R7 0049H INCD.B R7 004BH INCD.B

24

Increment
Changing addressing mode…

Ex. Write the following program and observe the output. Assume 0204H address’s initial content
is zero

mov #0x0200, r5; copy 200h to R5 register

inc.b 4(r5);increment the content of memory location indexed by R5+4

incd.b 4(r5);increment double the content of memory location indexed by R5+4

R5 0200H 0x0204 01H INC.B 0x0204 03H INCD.B

25

Increment
Changing addressing mode…

Ex. mov.w #0x2345, r4; copy 2345H to R4 register

mov.w #0x5789, r5; copy 5789H to R5 register

sub r4, r5 ; subtract R4 from R5 and save the result to R5

inc.b r5 ; increase LSB of R5 by 1 and save it to R5

R5 5789H R4 2345H R5 5789H - 2345H = 3444H SUB R5 0045H INC.BR4 2345H

26

Decrement
DEC(.B or .W)dst; Decrement destination. The destination is decremented by 1.

Ex:
mov.w #0x2345, r8; copy 2345H to R8 register

dec r8; decrease R8 content by 1, content of R8 is 2344H

dec.w r8; decrease R8 content by 1, content of R8 is 2343H

dec.b r8; decrease R8 LSB content by 1, content of R8 is 0042H

R8 2345H R8 2344H DEC DEC.W R8 2343H DEC.B R8 0042H

27

Decrement
Ex: Assume 0x0202h address has ABCDH, 0x0204H has 2345H and 0x0206H has
4569H initially and run the following program.

mov #0x0200, r7; copy 200h to R7 register

dec 2(r7); decrement 202h address content by 1, (0202h)= ABCCH

dec 4(r7); decrement 204h address content by 1, (0204h)= 2344H

dec 6(r7); decrement 204h address content by 1, (0206h)= 4568H

R7 0200H 0202H ABCCH DEC DEC 0204H 2344H DEC 0206H 4568H

28

Decrement
DECD(.B or .W)dst; Decrement destination. The destination is decremented by 2.

Ex:

mov.w #0x6937, r9; copy 6937H to R9 register

decd r9; decrease R9 content by 2, content of R9 is 6935H

decd.w r9; decrease R9 content by 2, content of R9 is 6933H

decd.b r9; decrease R9 LB content by 2, content of R9 is 31H

R9 6937H R9 6935H DECD DECD.W R9 6933H DECD.B R9 0031H

29

Examples
Ex:

mov.w #0x234D, r15 ;R15=234DH

xor.w #0x4575, r15 ;R15=234DH XOR 4575H, R15= 6638H

inc r15 ;R15=6639H

incd r15 ;R15=663BH

incd.w r15 ;R15=663DH

dec.w r15 ;R15=663CH

decd.w r15 ;R15=663AH

decd.b r15 ;R15=0038H

30

Examples
Ex:

mov.w #0x2135, r12 ;R12=2135H

mov.w #0x4364, r13 ;R13=4364H

add.w r12, r13 ;R13=6499H

mov.w #0x1111, r11 ;R11=1111H

sub.w r11, r13 ;R13=5388H

xor.w #0x3245, r13 ;R13=61CDH

decd.w r13 ;R13=61CBH

incd.b r13 ;R13=00CDH

