Measure of Variation

Example: Find the range for the example of orange juice.

$$R_{A} = 1.06 - 0.94 = 0.12$$
 indicating a greater
 $R_{B} = 1.14 - 0.88 = 0.26$ spread in the values
for company B.

$$d = x_1 - M$$

$$= x_2 = M$$

$$for population$$

$$= x_N - M$$

$$d = X_1 - \overline{X}$$

 $= X_2 - \overline{X}$ for a random sample
 \vdots
 $= X_1 - \overline{X}$

Example: Consider the following two sets of data, then, discuss variability of A and B.

Set A | 3 4 5 6 8 9 10 12 15
Set B | 3 7 7 7 8 8 8 9 15
RA=12, R_B=12;
$$M_A=8, M_B=8$$

Variance or deviation (d)?
Set A | -5 -4 -3 -2 0 1 2 4 7
Set B | -5 -1 -1 -1 0 0 0 1 7
 $Most of the deviations of set B are$
smaller in magnitude than those of
set A indicating less variation among
the observations of set B.

Population Variance
$$(\sigma^2)$$
: Given the finite
population X1, X2,..., XN, the population
Variance is
 $\sigma^2 = \frac{\tilde{\Sigma}(x_i - M)^2}{N_{min}}$ population size

Example: Consider the two sets A and B populations \Longrightarrow

for set
$$A = 3 G_A^2 = \frac{\sum_{i=1}^{N} (x_i - 8)^2}{9} = \frac{(3 - 8)^2 + (4 - 8)^2 + \dots + (15 - 8)^2}{9}$$

 $\overline{GA}^2 = 13.77$
for set $B = 3 \overline{GB}^2 = \frac{(3 - 8)^2 + (7 - 8)^2 + \dots + (15 - 8)^2}{9}$
 $\overline{GB}^2 = 8.66$
Compare \overline{GA}^2 and $\overline{GB}^2 = 3$
 $\overline{GB}^2 = 8.66$
Compare $\overline{GA}^2 = 3 \overline{GB}^2 = 3$ data set for A is
more variable than the data of set B .
Population Standard Deviation (\overline{G}):
 $\overline{J} = \sqrt{\overline{G}^2}$
 $\overline{J} = \sqrt{\overline{G}^2}$

Example: What is the Standard deviation for the data 7,5, 9, 7, 8, 6 ? (Treat the data as population)

Solution:

$$M_{=} = \frac{1}{6} \frac{1}$$

Example: Coffee prices at 4 randomly selected grocery stores are 12, 15, 17, 20 cents for a jar of 200 g. Find the variance of this random sample of price increase.

$$\overline{X} = \frac{12 + 15 + 17 + 20}{4} = 16 \text{ cents}$$

$$\frac{4}{5} (x_{1} - 16)^{2}$$

$$\frac{5^{2}}{4} = \frac{(x_{1} - 16)^{2}}{4} = \frac{(12 - 16)^{2} + \dots + (20 - 16)^{2}}{3} = \frac{34}{3}$$

$$St. \text{ dev. of sample = } S = \sqrt{\frac{34}{3}} = 3.36$$

<u>Z-Score</u>: An observation X from a population with mean μ and st.dev. σ has a Z-score or Z value defined by $Z = \frac{X-\mu}{\sigma}$.

X : any observation.

A z-score measures how many st.deviations an observation is above or below the mean.

Example: If we assume that the student made a grade of 82 in chemistry and a grade of 89 in economics. Can we conclude that she is a beter student in economics than in chemistry ?

 μ = 68, σ = 8 in chemistry

 $\mu = 80, \sigma = 6$ in economics

THE NORMAL (Gaussian) DISTRIBUTION (ND)

One of the most important frequency distributions in statistics is the ND.

Use the Tables instead of egn of ND Curve. So, @ All the observations of any normal random variables (X) are transformed to a new set of observations of a normal random variable 2 w; the mean M=0 and $\Gamma^2 = 1.0$. X ~> Z, Kow! $2 = \frac{X - f}{r}$ (2 calculated = 2 calc) If X is between X1 and t2 values, then, variable 2 will fall between Z1 and Z2. $2_1 = \frac{X_1 - f'}{\sigma}, \quad 2_2 = \frac{X_2 - f'}{\sigma}$ $X_{1} = X_{2}$ Normal Random Variables -> Standard Normal Variables

 $P(X_1 < X < X_2) \cong P(2_1 < 2 < 2_1)$

Example: Find the area under a normal curve between the mean and a point Z = 1.26 standard deviations to the right of the mean.

Area between mean (0) and 2 = 1.26 is equal to 0,8962 - 0.5 = 0,3962. Example: What is the area between Z = 0 and Z =- 1.26?

<u>Example</u>: Given a normal distribution with μ = 50 and σ = 10. Find the probability (P) that X assumes a value between 45 and 62.

<u>Example</u>: Given μ = 300 and σ = 50. Find the probability that X assumes a value greater than 362.

Solution:

$$P(X > 362), X = 362$$

$$2 = \frac{362 - 300}{50} = 1.24$$

$$P(x > 362) \cong P(2 > 1.24)$$

$$= 1 - P(2 < 1.24)$$

$$0.8925 P(1 = 1 - 0.8925 (Table 2))$$

$$= 1 - 0.8925 (Table 2)$$

$$= 1 - 0.1075 = Area = Probability$$

<u>Example</u>: Given a normal distribution with μ = 40 and σ = 6. Find the value of X that has

- a) 37.83 % of the area below it
- b) 5 % of the area above it

Find 2, then, calculate X.
G)
$$7z = \frac{X-M}{T} = 3$$

 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783
 73783

$$X = 6 \times (1.645) + 40 = 49.87$$

<u>Example</u>: An electric firm manufactures light bulbs that have a length of life that is normally distributed with mean equal to 800 hr and a st.dev. of 40 hrs. Find the probability (P) that a bulb burns between 778 and 834 hrs.

$$X_1 = 778, X_2 = 834$$

$$\begin{aligned} 2_{1} = \frac{778 - 800}{40} &= -0.55, \quad 2_{2} = \frac{834 - 800}{40} = 0.85 \\ P(778 < X < 834) \cong P(-0.55 < 2 < 0.85) \\ &= P(7 < 0.85) - P(7 < 0.55) \end{aligned}$$

$$= 0.8023 - 0.2912 (Table 2)$$

$$= 0.5111 \text{ or } 51.11^{\circ}/_{3}$$

$$= 0.5111 \text{ or } 51.11^{\circ}/_{3}$$

Example: A certain type of storage battery lasts on the average 3 years with a st.dev. of 0.5 years. Find the P that a given battery will last less than 2.3 years.

Solution:

$$\begin{array}{l}
P = 3, \ G = 0, S, \ X = 2.3 = 3 \\
P = \frac{2.3 - 3}{0.5} = -1.4 \\
P (X < 2.3) \stackrel{\sim}{=} P (2 < -1.4) \\
P = 0.0808 = Area = Probability \\
\stackrel{\circ}{=} \frac{1}{2} = -1.4 \\
\end{array}$$

<u>Homework</u>: On an examination the average grade was 74 and σ = 7. If 12 % of the class are given A's, and the grades are curved to follow a normal distribution, what is the lowest possible A and the highest possible B ?