PROBLEMS

1) One pound (0.454 kg) of head lettuce is packaged in an air tight container with a volume of 4 lt. The product occupies 80 % of the volume, the rest being air. If the product is at a constant temperature of 4°C, calculate how long it will take for oxygen content in the package to drop to 2.5 % of air. Respiration quotient is defined as the ratio of CO₂ produced to O₂ consumed is 1.0 for the reaction. (a = 26.7 mW/kg, b = 0.088/°C, M.Wt.CO₂ = 44, and of O₂ = 32 g/gmol, 1 mgCO₂ produces 10.7 J)

$$C_{6}H_{12}O_{6} + 6O_{2} \longrightarrow 6CO_{2} + 6H_{2}O + ENERGY$$

$$\underbrace{Solution:}_{Heat}$$

$$9 = a \cdot e^{b \cdot T} = 26.7 \times e^{0.089 \times (4)} \Longrightarrow$$

$$9 = 38 \text{ mW/kg } \text{ product} = 38 \times 10^{3} \text{ J/kg.s}$$

$$\underbrace{\operatorname{Mg} CO_{2} \text{ produced}}_{h} = 38 \times 10^{3} \frac{3}{5} \times \frac{1 \text{ mg} CO_{2}}{10.7 \text{ js}} \times \frac{3600 \text{ s}}{1 \text{ hr}} \times 0.454 \text{ kg}$$

$$= 5.8 \text{ mg} CO_{2}/h = 5.8 \times 10^{3} \text{ g} \text{ cO}_{2} \text{ produced/h}$$

$$9 \underbrace{\operatorname{Mol} CO_{2}}_{h} = 9 \text{ mol } O_{2} \text{ depleted/h} = \frac{5.8 \times 10^{3} \text{ g} \text{ CO}_{2}/h}{44 \text{ g} CO_{2}/g \text{ mol } CO_{2}}$$

$$= 1.318 \times 10^{-4} \text{ g mol } CO_{2}/h \equiv 9 \text{ mol } O_{2} \text{ depleted/h}.$$

$$\operatorname{Air} \underbrace{21^{0}/_{0}O_{2}}_{370^{-1}/_{0}^{-1}} N_{2}$$

The total # of moles of air originally in the container is

$$N = \frac{PV}{RT} = \frac{1 a t m \times (4 L t \times \frac{20}{100})}{[0.08206 L t \cdot a t m/(mol.K)] \cdot (273+4)K}$$

n = 0,0352 molair.

Since the KQ is 1.0, there will be no net change in the total # of moles of gases inside the container. The # of moles of oxygen when the concentration is 2.5% is;

$$N_{02} = 0,025 \times 0,0352 = 0,00088$$
 mol 0_2 (Find 0_2 content)
The original # of moles of $0_2 = 0,21 \times 0,0352$

$$= 0,007392$$
 mol $0z$

The # of moles of O₂ that must be depleted
(consumed) by respiration is:
$$N_{O_2}$$
 depletion = 0,007392 - 0,00088 = 0,006512 molO₂
The time required to deplete O₂ to the desired level:
 $T_{ime} = \frac{0,006512 molO_2}{0,0001318 molO_2/h} = 49.4 hr.$

2) For experimental work 50 ton of apples are stored in an airtight cold storage with volume V. The product occupies 83.33 % of the volume, the rest being air in which is containing 3 % O₂. If the product is kept at a constant temperature of 2.22°C, calculate the volume of the cold storage for the oxygen to drop to 0.8 % of initial air in 60 hr. Assume respiration quotient is 1.0 and the constants *a* and *b* for the heat of respiration of apple is 19.4 mW/kg and 0.108/°C, respectively. R = 0.08206 m³.atm/(kgmol.K). Combustion of glucose releases 10.7 J/mg CO₂.

3) It is desired to cool cabbage from 30 to 5°C in 4 hr. Calculate the heat generation (kJ/kg) during this cooling period. (a = 337 mW/kg, b = 0.041/°C).

Solution:

$$30^{\circ}c \longrightarrow 5^{\circ}c \longrightarrow f = 4hr \equiv 14400 s.$$

$$Q = \frac{q.e}{\left[\frac{q.e}{t} + \frac{1}{2}\right] \times b} \times \left[1 - e^{b(T_{1} - T_{2})}\right]$$

$$Q = \frac{337}{\left[\frac{T_{1} - T_{2}}{t}\right] \times b} \times \left[1 - e^{b(T_{1} - T_{2})}\right]$$

$$Q = \frac{337}{\left[\frac{(30 - 5)^{\circ}c}{14400 s}\right] \times 0,041} \times \frac{30}{s} \times \left[1 - e^{-0,041/6} \times (30 - 5)^{\circ}c}\right]$$

$$= \frac{337 \times 10^{3} \text{ W/kg} \times 3.42}{7.12 \times 10^{-5}/5} \times 0.641 = \frac{0.737}{7.12 \times 10^{-5}/5} = 40351 \frac{J}{Kg} = 40.351$$

4) A head lettuce of 454 g is packaged in an air tight container. If the product is at a constant temperature of 4°C and RQ is 0.87, then, calculate the amount of oxygen consumed in mol/hr. $(a = 26.7 \text{ mW/kg}, b = 0.088/°C, 1 \text{ mg CO}_2 \text{ produces 10.73 J}).$

Solution:

9

$$q = q.e^{bT} = 26.7 \times e^{0.088 \times 4} = 38 \times 10^{-3} \frac{1}{kg} = 38 \times 10^{-3} \frac{1}{kg} = 38 \times 10^{-3} \frac{1}{kg}$$

$$\frac{mg}{h} = \frac{38 \times 10^3 \text{ j}}{\text{kg.s}} \frac{1 mg \text{CO}_2}{10.7 \text{ j}} \times \frac{3600 \text{ s}}{1 \text{ h}} \times 0.454 \text{ kg}}{1 \text{ h}}$$

$$\stackrel{\simeq}{=} 5.804 \text{ mg CO}_2 \text{ produced}/\text{h}}{\frac{5.8 \times 10^{-3} \text{ g}}{44 \text{ g/gmol}}} = 1.318 \times 10^{-4} \frac{\text{gmol} \text{CO}_2}{\text{h}} \text{ produced}.$$

$$PQ = \frac{mol CO_2 \text{ produced}}{mol O_2 \text{ depleted}} = 0,87 \frac{mol CO_2}{mol O_2}$$

$$gmol O_2 \text{ depleted} = 1,318 \times 10^{-4} \frac{gmol CO_2}{h} \times \frac{1gmol O_2 \text{ depleted}}{0,87 gmol CO_2}$$

$$= 1.514 \times 10^{-4} \text{ gmol O_2 depleted} / h$$

5) 2 kg of a respiring food product is stored at a constant temperature. If RQ is 0.9 and 102 mW heat/kg product is generated during storage, calculate the number of moles of CO_2 produced and O_2 consumed/hr. (1 mg CO_2 produces 10.7 J energy, $CO_2 = 44$ g/gmol, $O_2 = 32$ g/gmol).

Solution:

$$g \frac{mol CO_2}{h} = 102 \times 10^3 \frac{j}{kg.s} \times 2 kg \times \frac{1 \times 10^3 g CO_2}{10.7 j} \times \frac{1 g mol CO_2}{44 g CO_2} \frac{3600 s}{1h}$$

= 1.559 × 10⁻³ g mol CO₂ produced/h
g mol O₂ depleted/h = 1.559 × 10⁻³ g mol CO₂ × $\frac{1 g mol O_2}{h} \times \frac{1 g mol O_2}{0.9 g mol CO_2}$
= 1.7332 × 10⁻³ g mol O₂ depleted/h -

6) a) The data for minimum storage life of well packaged chicken is tabulated as follows:

Temperature	°C	-10	-15	-18	-20	-25
	°F	+14	+5	-0.4	-4	-13
Time (month)		2.5	6	10	13	26

What would be the equivalent duration of storage at a steady temperature of $0^{\circ}F$?

b) The time-temperature history of this well packaged chicken during storage is: Let us suppose that the temperature of packaged product rises linearly with time from an initial -10 to $+2^{\circ}F$ in 0.5 month, is held at $+2^{\circ}F$ for 2 months, rises linearly to $+14^{\circ}F$ in 0.1 month, held at $+14^{\circ}F$ for 0.1 month, falls linearly to - $6^{\circ}F$ in 0.3 month, and is held at $-6^{\circ}F$ for an additional 3 months.

How much longer could the product be held at the final temperature of -6°F before it reached the end of its expected "minimum life"? Assume the fraction of quality lost is 0.563 during storage.

 $u_{\text{point}} = 0.9531 - 0.0377 \times T$

Duration of chicken in the storage at 0°F is about 9 months.

b) Find the storage life of chicken at the
temperatures given in time-temperature
history by using semi-log paper
$$\frac{T(PF)}{-10} = \frac{H(From Semi-log Paper)}{-10} = \frac{21.38}{-6} = \frac{15.11}{+2} = \frac{7.545}{-5.545}$$

The quality remaining = 1-
$$\int \frac{1}{H} dt$$

= 1- 0,563 = 0,437
At - 6°F storage; 0.437 × 15.11 = 6.6 months
can be held before it reached the end of
its expected minimum life.

7) A well packaged food product is stored at fluctuating temperature for 6 months. At the end of the storage period the fraction of high quality lost is 0.60. How much longer could the product be held at the temperature of -15°C before it reached the

end of its expected minimum life ? The data for minimum storage life for the product is;

Temperature (°C)	-10	-15	-18	-20	-25
Time (month)	2.5	6	10	13	26

Solution:

8) The mathematical expression for storage life of chicken is

Log(H) = 0.9531 - 0.0377xT (From question 6)

where, H is duration of the product in the storage in month, T is the storage temperature in °F.

a) How much longer could the product be held at steady temperatures of -10°F ?

b) The product is exposed to fluctuating temperatures during storage and $\int \left(\frac{1}{H}\right) dt$ is estimated to be 0.4. How much longer could the product be held further at -10°F?

c) Calculate % change in shelf life (decrease or increase) at this temperature.

Solution:

Remaining quality fraction =
$$1 - 0.40 = 0.60$$

At $-10^{\circ}F \Rightarrow H = 0.6 \times 21.38 = 12.83$ months

c) change in shelf life =
$$21.38 - 12.83$$

= 8.55 months decrease at $-10^{\circ}F$.

% change (decrease) =
$$\frac{8.55}{21.38} \times 100 \cong 40\%$$

9) <u>Homework:</u> In a cold storage room which is 18 m long, 9 m in width and 4 m in height. 100 tons of apples are stored at 7°C for 4 months. Due to the respiration of apple, 0.113 m³/(ton.day) CO₂ is produced. 21-10 % volume of CO₂ is thought to be maintained in this cold storage. When the amount of CO₂ is increased to 21 % volme, the air starts to recirculation from cold storage through active carbon until the amount of CO₂ is reduced to 10 % volume. The absorptivity of CO₂ is 11.36 gmoleCO₂/kg active carbon. According to the data given above, if the product occupies 148 m³ of the storage,

a) how many times should you recirculate the air through absorption unit ?

b) how many kg of active carbon and oxygen are required fort his purpose for each time ? (R = 0.08206 L.mol/(gmol.K)

Solution:

10) a) Cauliflower produces 36 mgCO₂/(kg.h) at 10°C. If the Q_{10} value is 2.4, what would be the respiration rate [mgCO₂/(kg.h)] at 20°C ?

b) In order to reduce the respiration rate to 60 mg $CO_2/(kg.h)$, to which temperature should we cool the cauliflower ? Use the same Q_{10} value.

<u>Solution</u>: a) $Q_{10} = 2.4$ (Given)

b)
$$Q_{10} = 2.4 (qiven) \left(\frac{10}{20-T}\right)$$

 $Q_{10} = \left(\frac{R_2}{R_1}\right)^{\left(\frac{10}{T_2-T_1}\right)} = 2.4 = \left(\frac{86.4}{60}\right) = \right)$

Take log of both sides =) $0,38 = \left(\frac{10}{20-T}\right)^{n} \log\left(\frac{86.4}{60}\right)$ $= T = 15.84^{\circ}C$

<u>Homework:</u> Use the same data given in Q1. If RQ is 0.80 now, calculate how long it will take for oxygen content in the package to drop to 2.5 % of air.