## Testing the Equality of Variances (F-Distribution)

The F-distribution can be used to test the hypothesis that the variances  $\sigma_1^2$  and  $\sigma_2^2$  of two normally distributed populations are equal.

It is not necessary to assume that the two populations have equal means.



⊗ When independent random samples  
have been drawn from the respective  
populations, the ratio
$$F = \frac{S_1^2}{S_2^2} \quad (ould be used to makeinferences about theratio  $\Gamma_1^2/\Gamma_2^2$ .
$$F_{calc} = \frac{Larger sample variance}{Smaller sample variance}$$
V1: The numerator degrees of freedom.  
 $V_1 = \Pi_1 - 1$   
 $V_2$ : The denominator degrees of freedom.  
 $V_2 = \Pi_2 - 1$   
⊗ Ef the null hypothesis (H<sub>0</sub>) were  
true ( $\Gamma_1^2 = \Gamma_2^2$ ), then, we would  
expect the ratio of the sample  
variances to be close to 1.0.  
 $F = \frac{S_1^2}{S_2^2} = 1 = 2 \int_1^2 = G_2^2$ : Ho
⊗ Ef  $\frac{S_1^2}{S_2^2} = 0$  or  $\frac{S_1^2}{S_2^2} = 2 + 1 = 2 \int_1^2 \frac{S_1^2}{S_2^2} = 0$$$

the population variances are  
different 
$$(T_1^2 \pm T_2^2)$$
  
i.e., reject Ho.

## **Properties of F-Distribution**

- 1) Unlike t or Z, F can assume only positive values.
- 2) It is nonsymmetrical
- 3) The F values are fixed from tables by  $\alpha$ ,  $\gamma_1$ ,  $\gamma_2$ .
- 4) There are different F tables for various  $\alpha$  values (F<sub>0.10</sub>, F<sub>0.05</sub>, F<sub>0.025</sub>, F<sub>0.01</sub> tables)
- 5) Mean for F-distribution is 1.0



Confidence Interval For  $F = \frac{\sigma_1^2}{\sigma_2^2}$   $P\left[\left(F\left(1-\frac{\alpha}{2}\right)\left(V_1,V_2\right)\right] < \left(F\left(F_{\alpha/2}\left(V_1,V_2\right)\right)\right) = 1-\alpha$  $\int_{1/\sigma_2^2} \int_{1/\sigma_2^2} \int_{1/$ 



 $\frac{1}{F_{\alpha/2}(v_2,v_1)} < F < F_{\alpha/2}(v_1,v_2) : C I$ multiply both sides by  $F_{\alpha/2}(v_2,v_1) =$  $1 < F < F_{\alpha/2}(v_1,v_2) \times F_{\alpha/2}(v_2,v_1)$  and divide both sides by  $F_{\alpha/2}(v_1,v_2) =$ 

$$\frac{1}{F_{a/2}(V_1, V_2)} \lesssim F < F_{a/2}(V_2, V_1)$$
  
multiply both sides by  $\frac{S_1^2}{S_2^2} = 0$   
CI:  $\frac{S_1^2}{S_2^2} \times \frac{1}{F_{a/2}(V_1, V_2)} < \frac{F}{F_{a/2}(V_1, V_2)} < \frac{S_1^2}{S_2^2} \times \frac{F_{a/2}(V_2, V_1)}{S_2^2}$ 

**Example**: Determine the upper and lower critical limits for an F distribution with  $V_1=6$ ,  $V_2=3$  and  $\alpha=0.10$ .

Solution:  $X = 0.10 = F_{\alpha_{12}} = F_{0.10_{12}} = F_{0.05} =$ Use Fo.os table



Upper limit :  $F_{\alpha/2}(V_1, V_2) = F_{0,05}(6,3) = 8.94$ 

Lower limit: 
$$\frac{1}{F_{\alpha/2}(v_2,v_1)} = \frac{1}{F_{0,05}(3,6)} = \frac{1}{4.76} = 0,21$$

Example: What is F<sub>0.95</sub>(6, 10) value ?



**Example**: Assume we have 25 boy and 16 girl students. Average grade for the boys is 82 with a standard deviation of 8 and average grade for the girls is 78 with a standard deviation of 7. Find 98 % confidence interval for  $\frac{\sigma_1^2}{\sigma_2^2}$  and  $\frac{\sigma_1}{\sigma_2}$ .

Solution: 
$$\propto = 0.02$$
,  $n_1 = 25$ ,  $n_2 = 16$ ,  $S_1 = 8$ ,  $S_2 = 7$   
 $F_{\alpha/2} = F_{0.02/2} = F_{0.01} = 0$  Use  $F_{0.01}$  table.  
 $V_1 = n_{1} - 1 = 25 - 1 = 24$   
 $V_2 = n_2 - 1 = 16 - 1 = 15$   
 $F_{\alpha/2}(V_1, V_2) = F_{0.01}(24, 15) = 3.29$   
 $F_{\alpha/2}(V_2, V_1) = F_{0.01}(15, 24) = 2.89$ 

$$\begin{array}{rcl} 98^{\circ}/_{\circ} (CI = ) \\ \frac{64}{49} \cdot \left(\frac{1}{3.29}\right) < \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} < \frac{64}{49} \times (2.89) \\ 0,397 < \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} < 3.775 \longrightarrow CI for \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \\ tabe \sqrt{-} of both sides = ) \\ 0.630 < \frac{\sigma_{1}}{\sigma_{2}} < 1.943 \longrightarrow CI for \frac{\sigma_{1}}{\sigma_{2}} \end{array}$$

## **Hypothesis Testing Using F-Distribution**

a) Two-Tailed Test

Ho: 
$$\frac{\sigma_1^2}{\sigma_2^2} = 1$$
 or  $\sigma_1^2 = \sigma_2^2$   
HA:  $\frac{\sigma_1^2}{\sigma_2^2} \neq 1$  or  $\sigma_1^2 \neq \sigma_2^2$   
Test statistic : Feale  
Feale =  $\frac{\text{Larger Variance}}{\text{Smaller Variance}}$ 



b) One-Tailed Test (Right Hand Sided)



Feale = 
$$\frac{S_1^2}{S_2^2}$$
 when  $S_1^2 \ge S_2^2$  or  
Feale =  $\frac{S_2^2}{S_1^2}$  when  $S_2^2 \ge S_1^2$ 

c) One-Tailed Test (Left Hand Sided)

Ho: 
$$\frac{G_1^2}{G_2^2} = 1$$
 or  $G_1^2 = G_2^2$   
HA:  $\frac{G_1^2}{G_2^2} < 1$  or  $G_1^2 < G_2^2$   
Test statistic value: Fcalc  
Fcalc =  $\frac{\text{Smaller Variance}}{\text{Larger Variance}}$ 

$$F(1-\alpha) (V_1, V_2)$$

$$F(1-\alpha) (V_1, V_2)$$

$$F(1-\alpha) (V_1, V_2) \equiv \frac{1}{F_{\alpha x} (V_2, V_1)}$$

<u>Example</u>: If  $s_1^2 = 48.7$ ,  $n_1 = 5$ ,  $s_2^2 = 3.7$  and  $n_2 = 6$ , then, test whether the two populations have the same variabilities at  $\alpha = 0.10$ .

Two- tailed test. Solution: × Ho:  $\sigma_1^2 = \sigma_2^2$  or  $S_1^2 = S_2^2$  V Ha:  $\sigma_1^2 \pm \sigma_2^2$  or  $S_1^2 \pm S_2^2$  $F_{calc} = \frac{Larger Var}{Smaller Var} = \frac{48.7}{3.7} = 13.16$ Table values: V1=5-1=4, V2=6-1=5  $F_{\alpha_{1}}(v_{1},v_{2}) = F_{0,05}(4,5) = 5.19$ Reject Ho Decision: Reject Ho ,05 <u>Conclusion</u>: The two FG Populations have Fcalc=13.16 different Variabilities. 0.05 5.19